98%
921
2 minutes
20
Bacterial nanocellulose (BNC) membranes, with remarkable physical and mechanical properties, emerged as a versatile biopolymeric carrier of bioactive compounds for skin care applications. In this study, BNC membranes were loaded with glycerol (as plasticizer and humectant agent) and different doses (1-3 μg cm) of an aqueous extract obtained from the hydro-distillation of Labill. leaves (HDE), for application as sheet facial masks. All membranes are resistant and highly malleable at dry and wet states, with similar or even better mechanical properties than those of a commercial BNC mask. Moreover, the HDE was found to confer a dose-dependent antioxidant activity to pure BNC. Additionally, upon 3 months of storage at 22-25 °C and 52% relative humidity (RH) or at 40 °C and 75% RH, it was confirmed that the antioxidant activity and the macroscopic aspect of the membrane with 2 μg cm of HDE were maintained. Membranes were also shown to be non-cytotoxic towards HaCaT and NIH/3T3 cells, and the membrane with 2 μg cm of HDE caused a significant reduction in the senescence-associated β-galactosidase activity in NIH/3T3 cells. These findings suggest the suitability and potential of the obtained membranes as bioactive facial masks for anti-aging applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911559 | PMC |
http://dx.doi.org/10.3390/ma15051982 | DOI Listing |
Carbohydr Polym
November 2025
State Key Laboratory of Advanced Fiber Materials (Donghua University), Shanghai 201620, China; College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Med
Small-caliber artificial blood vessels are highly demanded and face challenges, including thrombosis and intimal hyperplasia. The excellent properties of bacterial nanocellulose (BNC) make it an excellent material for preparing artificial blood vessels. Heparin (Hep)-loaded silk fibroin microparticles (SFMPs) were synthesized in situ within the conduit wall via liquid pressure injection and phase separation, aiming to improve BNC's anticoagulant properties.
View Article and Find Full Text PDFStem Cell Rev Rep
September 2025
Medical Laboratories Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, Babylon, 51001, Iraq.
Stem cell-based tissue engineering offers transformative solutions for regenerating damaged tissues, such as bone, cartilage, and neural tissues. Chitosan and cellulose nanoparticles have emerged as promising biomaterials for enhancing stem cell delivery and scaffold performance due to their biocompatibility, biodegradability, and tunable properties. Chitosan, with its antimicrobial and bioadhesive properties, supports stem cell adhesion and differentiation in soft tissue scaffolds.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
August 2025
Department of Orthodontics, Stomatological Center, Guangdong Provincial High-level Clinical Key Specialty & Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China. Electronic address: peitao@pkusz
Aesthetic demands in contemporary dentistry have driven the widespread adoption of clear aligners (CAs), yet their polymeric substrates lack intrinsic antibacterial and anti-inflammatory functionality, predisposing the periodontium to inflammation during prolonged wear. Here, we present a multifunctional surface coating for PETG-based CAs, comprising dopamine-grafted TEMPO-oxidized bacterial cellulose nanofibers (TOBC-DA), curcumin (Cur), and polyvinyl alcohol (PVA), applied via a facile spin-coating process. TOBC-DA serves as a bioadhesive matrix that forms a robust, long-lasting bond with PETG while maintaining chemical stability in simulated oral conditions.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2025
School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China.
Bacterial nanocellulose (BNC) is a valuable biopolymer with immense potential in various sectors of biotechnology. However, large-scale production is hindered by low yields and high costs. Glycerol is an inexpensive and widely available carbon source for BNC biosynthesis, as it is a by-product of the biofuel industry.
View Article and Find Full Text PDFPolymers (Basel)
August 2025
Grupo de Investigación Alimentación y Nutrición Humana-GIANH, Escuela de Nutrición y Dietética, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050034, Colombia.
This article proposes a standard protocol to produce bacterial nanocellulose (). It will briefly review the main raw materials (common agro-industrial waste in tropical countries), process of obtaining bacterial nanocellulose membranes, and the cleaning process for said membranes. The processing of the membranes using a grinder and Ultra-Turrax is then shown, listing the characteristics provided by each of these methods to produce bacterial nanocellulose microparticles by spray drying.
View Article and Find Full Text PDF