The molecular splitting of HO is fundamentally significant in energy conversion and storage. While liquid water splitting has achieved scientific and engineering success, the decomposition of solid-state ice has yet to be realized. Here we demonstrate that ice can be directly split at temperatures as low as -40 °C.
View Article and Find Full Text PDFElectrodes are essential in alkaline water electrolysis for hydrogen production. However, developing straightforward and effective strategies to optimize the compositions and structures of electrode materials for enhanced performance and gas mass transfer remains a significant challenge. In this work, electrodes featuring karst landform-like surfaces and loaded with Ni-Fe hydroxide catalysts are rapidly fabricated by immersing nickel foam (NF) or nickel mesh (NM) in molten salt for corrosion.
View Article and Find Full Text PDFThe advancement of water electrolysis highlights the growing importance of electrolyzers capable of operating at high current densities, where mass transfer dynamics plays a crucial role. In the electrode reactions, the interfacial water is a key factor in regulating these dynamics. However, the potential of utilizing interfacial-free water (IFW) to modulate electrode behavior remains underexplored.
View Article and Find Full Text PDFThe seamless integration of electrocatalysts onto the electrode is crucial for enhancing water electrolyzers, yet it is especially challenging when scaled up to large manufacturing. Despite thorough investigation, there are few reports that tackle this integration through roll-to-roll (R2R) methodology, a technique crucial for fulfilling industrial-scale demands. Here, we develop an R2R flash Joule heating (R2R-FJH) system to process catalytic electrodes with superior performance.
View Article and Find Full Text PDFTo address the issues of target feature blurring and increased false detections caused by high compression rates in deepfake videos, as well as the high computational resource requirements of existing face extractors, we propose a lightweight face extractor to assist deepfake detection, GCS-YOLOv8. Firstly, we employ the HGStem module for initial downsampling to address the issue of false detections of small non-face objects in deepfake videos, thereby improving detection accuracy. Secondly, we introduce the C2f-GDConv module to mitigate the low-FLOPs pitfall while reducing the model's parameters, thereby lightening the network.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2024
Binder plays a crucial role in constructing high-performance electrodes for water electrolysis. While most research has been focused on advancing electrocatalysts, the application of binders in electrode design has yet to be fully explored. Herein, the in situ incorporation of polytetrafluoroethylene (PTFE) as a multifunctional binder, which increases electrochemical active sites, enhances mass transfer, and strengthens the mechanical and chemical robustness of oxygen evolution reaction (OER) electrodes, is reported.
View Article and Find Full Text PDFSmall Methods
November 2023
Despite the great progress in the research of integrated catalytic electrodes for hydrogen evolution reaction, the efficient preparation of high-performance catalytic electrodes with high current density remains a challenging issue. In this work, a metal (Pt)-amorphous oxide (NiO) heterostructure catalyst is successfully in situ grown on nickel foam using liquid Joule-heating. Based on the superhydrophilic surface of the electrode and its superior mechanical and chemical stability, the catalytic electrode exhibits excellent catalytic performance in alkaline electrolytes with only 100 mV overpotential to achieve 5000 mA cm current density and maintains a stable performance of 500 h under a fixed current density of 1000 mA cm .
View Article and Find Full Text PDFThe increasing demand for clean energy conversion and storage has increased interest in hydrogen production via electrolytic water splitting. However, the simultaneous production of hydrogen and oxygen in this process poses a challenge in extracting pure hydrogen without using ionic conducting membranes. Researchers have developed various innovative designs to overcome this issue, but continuous water splitting in separated tanks remains a desirable approach.
View Article and Find Full Text PDFHomogeneous and nanometric metal clusters with unique electronic structures are promising for catalysis, however, common synthesis techniques for metal clusters suffer from large size and even metal nanocrystals attributing to their high surface energy and unsaturated configurations. Herein, a generalized rapid annealing strategy for synthesizing a series of supported metal clusters as superior catalysts is developed. Remarkably, TiO supported platinum nanoclusters (Pt NC/TiO ) exhibits the excellent catalytic activity to realize phenol hydrogenation under mild conditions.
View Article and Find Full Text PDFCitrus is one of the most important fruits in China. Miyagawa Satsuma, one kind of citrus, is a nutritious agricultural product with regional characteristics of Chongming Island. Near-infrared Spectroscopy (NIR) is a proper method for studying the quality of fruits, because it is low-cost, efficient, non-destructive, and repeatable.
View Article and Find Full Text PDFS-doped Fe/Ni oxide and Fe/Ni hydride oxide catalysts exhibit good oxygen evolution reaction (OER) performance. Nevertheless, the over-doping of S and the agglomeration of active sites still hinder the improvement of the performance of these catalysts. The S/O ratio regulation can optimize the electronic structure effectively so as to improve the OER performance of the catalysts, but few studies have focused on this study.
View Article and Find Full Text PDFChem Commun (Camb)
August 2021
Efficient electrocatalysts are in great demand for renewable energy storage systems. Herein, we propose an ultrafast heating strategy to fabricate an efficient Ir/CP-UH catalyst for the oxygen evolution reaction (OER). Experimental results demonstrated that the ultrasmall Ir nanoparticles (≈1-3 nm) and clusters (<1 nm) were highly dispersed on the carbon paper support after a short thermal shock (∼5 s).
View Article and Find Full Text PDFMaterials (Basel)
May 2021
Production of hydrogen from water splitting has been considered as a promising solution for energy conversion and storage. Since a noble metal-based structure is still the most satisfactory but scarce kind of catalyst, it is significant to allow for practical application of such catalysts by engineering the heterogeneous structure and developing green and facile synthetic strategies. Herein, we report a mechanochemical ball milling synthesis of platinum nanoclusters immobilized on a 2D transition metal carbide MXene (NbCT) as an enhanced catalyst for hydrogen evolution.
View Article and Find Full Text PDFpv. (Psa) is a phytopathogen that causes canker in kiwifruit. Few conventional control methods are effective against this bacterium.
View Article and Find Full Text PDFpv. (Psa) is the causative agent of the bacterial canker of kiwifruit spp.).
View Article and Find Full Text PDFPlant Physiol
June 2020
One of the biggest challenges in clonal propagation of grapevine () is difficulty of rooting. Adventitious root initiation and development are the critical steps in the cutting and layering process of grapevine, but the molecular mechanism of these processes remains unclear. Previous reports have found that microRNA (miRNA)-encoded peptides (miPEPs) can regulate plant root development by increasing the transcription of their corresponding primary miRNA.
View Article and Find Full Text PDFRoot restriction cultivation leads to early maturation and quality improvement, especially in the anthocyanin content in grapevine. However, the molecular mechanisms that underlie these changes have not been thoroughly elucidated. In this study, four small RNA libraries were constructed, which included the green soft stage (GS) and ripe stage (RS) of 'Muscat' ( L.
View Article and Find Full Text PDF