Front Biosci (Landmark Ed)
February 2023
Background: As a potent mediator of hypothermic neuroprotection, the cold-inducible protein RBM3 is characterized with one RNA-recognition motifs (RRM) and one arginine-glycine-rich (RGG) domain. It is known that these conserved domains are required for nuclear localization in some RNA-binding proteins. However, little is known about the actual role of RRM and RGG domains in subcellular localization of RBM3.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2022
Neural cell adhesion molecule (NCAM) is involved in cell multi-directional differentiation, but its role in osteoblast differentiation is still poorly understood. In the present study, we investigated whether and how NCAM regulates osteoblastic differentiation. We found that NCAM silencing inhibited osteoblast differentiation in pre-osteoblastic MC3T3-E1 cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2021
Mild hypothermia is a well-established technique for alleviating neurological injuries in clinical surgery. RNA-binding protein motif 3 (RBM3) has been identified as a crucial factor in mediating hypothermic neuroprotection, providing its induction as a promising strategy for mimicking therapeutic hypothermia. However, little is known about molecular control of RBM3 and signaling pathways affected by hypothermia.
View Article and Find Full Text PDFStem Cells Transl Med
February 2020
Chondrocyte hypertrophy-like change is an important pathological process of osteoarthritis (OA), but the mechanism remains largely unknown. Neural cell adhesion molecule (NCAM) is highly expressed and involved in the chondrocyte differentiation of mesenchymal stem cells (MSCs). In this study, we found that NCAM deficiency accelerates chondrocyte hypertrophy in articular cartilage and growth plate of OA mice.
View Article and Find Full Text PDFBenzoylaconitine (BAC), the main hydrolysate of aconitine, is a lower toxic monoester type alkaloid considered as the pharmacodynamic constituent in Aconitum species. In this study, the effects and mechanisms of BAC on production of inflammatory cytokines interleukin (IL)-6 and IL-8 were investigated in IL-1β-stimulated human synovial SW982 cells. The SW982 cells were incubated with BAC (0, 5 and 10 µM) before stimulating with IL-1β (10 ng/mL).
View Article and Find Full Text PDFJ Mol Neurosci
February 2019
The cold-inducible protein RBM3 mediates hypothermic neuroprotection against nitric oxide (NO)-induced cell death. Meanwhile, it is well-known that cyclooxygenase-2 (COX-2) is upregulated by RBM3 in several types of cells; however, it is still unclear whether COX-2 contributes to the neuroprotective effects of mild hypothermia/RBM3 against NO-induced cell death. Using human SH-SY5Y neuroblastoma cells, it was revealed that NO remarkably downregulates the expression of COX-2 at both mRNA and protein levels.
View Article and Find Full Text PDFFront Pharmacol
August 2018
Fengshi Gutong capsule (FSGTC), a traditional herbal formula, has been used clinically in China for the treatment of arthritis. However, the mechanism underlying the therapeutic effects of FSGTC on osteoarthritis (OA) has not been elucidated. The present study investigated the function and mechanisms of FSGTC in rat OA model and interleukin (IL)-1β-stimulated synovial cells.
View Article and Find Full Text PDFProanthocyanidins (PA) are natural flavonoids widely present in many vegetables, fruits, nuts and seeds, and especially in grape seed. In the present study, we examined the neuroprotective effects of PA and the underlying molecular mechanism in rotenone model of Parkinson's disease (PD). We found that pretreatment with PA significantly reduced rotenone-induced oxidative stress in human neuroblastoma SH-SY5Y dopaminergic cells.
View Article and Find Full Text PDFThe cold shock protein RBM3 can mediate mild hypothermia-related protection in neurodegeneration such as Alzheimer's disease. However, it remains unclear whether RBM3 and mild hypothermia provide same protection in model of Parkinson's disease (PD), the second most common neurodegenerative disorder. In this study, human SH-SY5Y neuroblastoma cells subjected to insult by 1-methyl-4-phenylpyridinium (MPP) served as an model of PD.
View Article and Find Full Text PDFInduced by hypothermia, cold-inducible protein RBM3 (RNA-binding protein motif 3), has been implicated in neuroprotection against various toxic insults such as hypoxia and ischemia. However, whether mild hypothermia and RBM3 prevent neural cells from UV irradiation-elicited apoptosis is unclear. In the present study, human neuroblastoma cell line SH-SY5Y was used as a cell model for neural cell death, and it was demonstrated that mild hypothermia protects SH-SY5Y cells from UV irradiation-induced apoptosis.
View Article and Find Full Text PDFInt Immunopharmacol
September 2017
The present study shows the basis for the anti-inflammatory effects of pitavastatin in interleukin (IL)-1β-induced human synovial cells. The SW982 cells were pretreated with pitavastatin at different concentrations (5μM and 10μM), followed by IL-1β (10ng/mL) stimulation. The results showed that pitavastatin inhibited the expression of inflammatory mediators IL-6 and IL-8.
View Article and Find Full Text PDFMol Cell Biochem
November 2017
The neural cell adhesion molecule (NCAM), a key member of the immunoglobulin-like CAM family, was reported to regulate the migration of bone marrow-derived mesenchymal stem cells (BMSCs). However, the detailed cellular behaviors including lamellipodia formation in the initial step of directional migration remain largely unknown. In the present study, we reported that NCAM affects the lamellipodia formation of BMSCs.
View Article and Find Full Text PDFTo study the role of oleanolic acid on interleukin (IL)-1β-stimulated expression of inflammatory cytokines, and to explore its anti-inflammatory mechanism in SW982 cells, the toxicity of oleanolic acid on SW982 cells was detected by MTT; effects of different concentrations of oleanolic acid(5, 10, 20 μmol·L(-1)) on the expression of inflammatory factors IL-6, IL-8 and matrix metalloproteinase-1 (MMP-1) was tested at protein and m RNA levels. The study was performed in IL-1β-stimulated SW982 cells together with enzyme-linked immunosorbent assay (ELISA) and real-time fluorescence quantitative PCR (real-time PCR) methods; the influence of oleanolic acid on the phosphorylation of mitogen-activated protein kinase (MAPK), phosphatidyl inositol-3-kinase/Akt (PI3K/Akt) and nuclear transcription factor-κB (NF-κB) signaling pathways related protein was analyzed by Western blot. Results showed that different concentrations of oleanolic acid(≤40 μmol·L(-1)) were almost non-toxicity to SW982 cells; oleanolic acid significantly inhibited the expression of inflammatory factors in a dose-dependent manner; oleanolic acid restrained extracellular signal-related kinase (ERK), p38, c-jun N-terminal kinase (JNK) and Akt protein phosphorylation and IκB-α protein degradation obviously.
View Article and Find Full Text PDFHydroxysafflor yellow A (HSYA), the main active ingredient in medical and edible dual purpose plant safflower, is reported to have multiple bioactivities. In the present study, the anti-inflammatory effects of HSYA and the underlying mechanisms were investigated in interleukin (IL)-1β-induced SW982 human synovial cells. The cells were pretreated with HSYA at various concentrations (2.
View Article and Find Full Text PDFJ Mol Neurosci
December 2016
NG2-expressing neural progenitors can produce neurons in the central nervous system, providing a potential cell resource of therapy for neurological disorders. However, the mechanism underlying neuronal differentiation of NG2 cells remains largely unknown. In this report, we found that a thrombospondin (TSP) family member, TSP4, is involved in the neuronal differentiation of NG2 cells.
View Article and Find Full Text PDFPRDM (PRDI-BF1 and RIZ domain-containing) proteins constitute a family of zinc finger proteins and play important roles in multiple cellular processes by acting as epigenetic modifiers. PRDM5 is a recently identified member of the PRDM family and may function as a tumor suppressor in several types of cancer. However, the role of PRDM5 in murine melanoma remains largely unknown.
View Article and Find Full Text PDFAm J Transl Res
November 2015
Melanoma is the leading cause of skin cancer death owing to its highly metastatic nature and resistance to chemotherapy. It may account for 80% of the deaths relating to skin cancers. Once it progressed to metastatic stage, no current effective treatment is available for melanoma.
View Article and Find Full Text PDFAm J Transl Res
November 2015
Excessive nitric oxide (NO) produced in inflammation may result in oxidative stress, which is closely related to the neurodegenerative diseases and brain damage. Massive NO production can enhance NF-κB activity in various neural cells, but the function of this activation by NO and the target genes transactivated by NF-κB are still largely unknown. In the present study, our results showed sodium nitropruside (SNP), a NO donor, triggered apoptotic cell death and NF-κB activation in human neuroblastoma SH-EP1 cells, and inhibition of NF-κB activation by its super endogenous inhibitor, I-κBαM, sensitized SH-EP1 cells to NO-induced apoptosis.
View Article and Find Full Text PDFFound in neurons and neuroblastoma cells, Fas-induced apoptosis and accompanied activation of NF-κB signaling were thought to be associated with neurodegenerative diseases. However, the detailed functions of NF-κB activation in Fas killing and the effect of NF-κB activation on its downstream events remain unclear. Here, we demonstrated that agonistic Fas antibody induces cell death in a dose-dependent way and NF-κB signaling is activated as well, in neuroblastoma cells SH-EP1.
View Article and Find Full Text PDFOligodendrocytes (OLs) are derived oligodendrocyte progenitor cells (OPCs), and their differentiation is a tightly regulated process. It is known that cyclin-dependent kinases (CDKs) play an essential role as regulators of OPC differentiation. Here, we newly identified a CDK-like protein, PFTK1, to be involved in OPC differentiation.
View Article and Find Full Text PDFBiomed Chromatogr
April 2014
Qishenyiqi dropping pill (QSYQ), is a traditional Chinese medicine (TCM) prescription for treating heart diseases in China. Knowledge concerning the systemic identification of active compounds and metabolic components of QSYQ is generally lacking. Therefore, it is essential to develop a valid method for the analysis of active compounds of the combined prescription and determination of interactions among the herbs.
View Article and Find Full Text PDFYao Xue Xue Bao
May 2013
This study aims to clarify out the anti-inflammatory mechanism of Qingfei Xiaoyan Wan. Chemical constituents of Qingfei Xiaoyan Wan identified by UPLC Q-TOF, were submit to Molinspiration, PharmMapper and KEGG bioinformatics softwares for predicting their absorption parameters, target proteins and related pathways respectively; and the gene chip and real time-PCR were carried out to investigate the expression of inflammatory genes on lung tissue of guinea pigs or human bronchial epithelial cell lines. The predicted results showed that 19 of the 24 absorbable constituents affected at 9 inflammation-related pathways through 11 protein targets; Qingfei Xiaoyan Wan treatment can significantly reduce the infiltration of cytokines through ERK1 gene and 5 inflammatory pathways (Focal adhesion, Fc epsilon RI, Toll-like receptors, NK cell-mediated cytotoxic, and ERK/MAPK).
View Article and Find Full Text PDF