98%
921
2 minutes
20
Neural cell adhesion molecule (NCAM) is involved in cell multi-directional differentiation, but its role in osteoblast differentiation is still poorly understood. In the present study, we investigated whether and how NCAM regulates osteoblastic differentiation. We found that NCAM silencing inhibited osteoblast differentiation in pre-osteoblastic MC3T3-E1 cells. The function of NCAM was further confirmed in NCAM-deficient mesenchymal stem cells (MSCs), which also had a phenotype with reduced osteoblastic potential. Moreover, NCAM silencing induced decrease of Wnt/β-catenin and Akt activation. The Wnt inhibitor blocked osteoblast differentiation, and the Wnt activator recovered osteoblast differentiation in NCAM-silenced MC3T3-E1 cells. We lastly demonstrated that osteoblast differentiation of MC3T3-E1 cells was inhibited by the PI3K-Akt inhibitor. In conclusion, these results demonstrate that NCAM silencing inhibited osteoblastic differentiation through inactivation of Wnt/β-catenin and PI3K-Akt signaling pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8150200 | PMC |
http://dx.doi.org/10.3389/fendo.2021.657953 | DOI Listing |
J Biomed Mater Res B Appl Biomater
September 2025
Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
In the current in vitro experiment, we fabricated and characterized placenta/platelet-rich plasma (PL/Pt) composite scaffolds and evaluated their effect on differentiating adipose stem cells (ASCs) into insulin-producing cells (IPCs) in vitro. The human placenta (PL) was decellularized (dPL), characterized, and digested in pepsin. PRP was extracted using a two-step centrifugation process and then freeze-dried.
View Article and Find Full Text PDFInt J Implant Dent
September 2025
Department of Periodontology, Center for Biomedical Education and Research (ZBAF), School of Dentistry, Faculty of Health, Witten/Herdecke University, Witten, Germany.
Background: Guided bone regeneration (GBR) relies on biocompatible membranes to support osteogenesis. 1,4-butanediol diglycidyl ether (BDDE)-crosslinked hyaluronic acid (xHyA) has shown promise in enhancing bone regeneration, yet its mechanisms remain unclear.
Objective: This study evaluates the osteogenic effects of xHyA-functionalized native pericardium collagen membrane (NPCM) and ribose-crosslinked collagen membrane (RCCM) using an airlift culture model with SaOS-2 cells.
Blood Adv
September 2025
Zhongnan Hospital of Wuhan University, Wuhan, China.
The role of inflammation in the regulation of acute myeloid leukemia (AML) and stressed hematopoiesis is significant, though the molecular mechanisms are not fully understood. Here, we found that mesenchymal stromal cells (MSCs) had dysregulated expression of the inflammatory cytokine S100A8 in AML. Upregulating S100A8 in MSCs increased the proliferation of AML cells in vitro.
View Article and Find Full Text PDFStem Cells Int
August 2025
Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
Postmenopausal osteoporosis (PMOP) is a common bone metabolic disorder in middle-aged and elderly women, yet its pathogenesis remains unclear. This study investigates the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) deficiency on bone homeostasis to provide insight into the mechanisms underlying PMOP. Sixteen female SD rats were randomly assigned to Sham and ovariectomized (OVX) groups.
View Article and Find Full Text PDFJOR Spine
September 2025
Spine Center, Department of Orthopaedics Changzheng Hospital, Naval Medical University (Second Military Medical University) Shanghai People's Republic of China.
Background: Ossification of the posterior longitudinal ligament (OPLL) is a pathological condition characterized by ectopic ossification of spinal ligaments, primarily driven by abnormal osteogenic differentiation of ligament fibroblasts with stem cell-like properties. The SOX transcription factor family is crucial in regulating cell stemness and differentiation. Among them, SOX8 is known to influence osteoblast differentiation, but its role in OPLL remains unclear.
View Article and Find Full Text PDF