Publications by authors named "Alexander Grutter"

Altermagnets are a newly identified family of collinear antiferromagnets with a momentum-dependent spin-split band structure of non-relativistic origin, derived from spin-group symmetry-protected crystal structures. Among candidate altermagnets, CrSb is attractive for potential applications because of a large spin-splitting near the Fermi level and a high Néel transition temperature of around 700 K. Molecular beam epitaxy is used to synthesize CrSb (0001) thin films with thicknesses ranging from 10 to 100 nm.

View Article and Find Full Text PDF

The rapid advancement of generative artificial intelligence has significantly increased the demand for both energy and data storage. Magneto-ionics, which utilizes ionic motion to control magnetism, often driven by an electric field in heterostructures, has gained significant attention for its potential to enable energy-efficient modulation of magnetic properties with large effects. This study proposes a CMOS-compatible solid-state magneto-ionic system composed of all-Mn-nitrides and demonstrates that nitrogen ionic motion can induce reversible phase transitions between ferrimagnetic and antiferromagnetic Mn nitrides.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the impact of hydrogen incorporation in layered superconducting nickelate films and its potential link to superconductivity.
  • Films are created by converting a stable parent compound into the desired phase using a reducing agent like CaH, but achieving highly crystalline nickelate films remains challenging.
  • Findings show that hydrogen incorporation is minimal across various samples, both superconducting and non-superconducting, suggesting that it’s not essential for achieving superconductivity in these nickelate systems.
View Article and Find Full Text PDF

The interface of two materials can harbor unexpected emergent phenomena. One example is interface-induced superconductivity. In this work, we employ molecular beam epitaxy to grow a series of heterostructures formed by stacking together two nonsuperconducting antiferromagnetic materials, an intrinsic antiferromagnetic topological insulator MnBiTe and an antiferromagnetic iron chalcogenide FeTe.

View Article and Find Full Text PDF

The effect of oxygen reduction on the magnetic properties of LaFeO (LFO) thin films was studied to better understand the viability of LFO as a candidate for magnetoionic memory. Differences in the amount of oxygen lost by LFO and its magnetic behavior were observed in nominally identical LFO films grown on substrates prepared using different common methods. In an LFO film grown on SrTiO (STO) substrate, the original perovskite film structure was preserved following reduction, and remnant magnetization was only seen at low temperatures.

View Article and Find Full Text PDF

The boundary between CaRuO and CaMnO is an ideal test bed for emergent magnetic ground states stabilized through interfacial electron interactions. In this system, nominally antiferromagnetic and paramagnetic materials combine to yield interfacial ferromagnetism in CaMnO due to electron leakage across the interface. In this work, we show that the crystal symmetry at the surface is a critical factor determining the nature of the interfacial interactions.

View Article and Find Full Text PDF

The interface between two different materials can show unexpected quantum phenomena. In this study, we used molecular beam epitaxy to synthesize heterostructures formed by stacking together two magnetic materials, a ferromagnetic topological insulator (TI) and an antiferromagnetic iron chalcogenide (FeTe). We observed emergent interface-induced superconductivity in these heterostructures and demonstrated the co-occurrence of superconductivity, ferromagnetism, and topological band structure in the magnetic TI layer-the three essential ingredients of chiral topological superconductivity (TSC).

View Article and Find Full Text PDF

The quantum anomalous Hall (QAH) effect is characterized by a dissipationless chiral edge state with a quantized Hall resistance at zero magnetic field. Manipulating the QAH state is of great importance in both the understanding of topological quantum physics and the implementation of dissipationless electronics. Here, the QAH effect is realized in the magnetic topological insulator Cr-doped (Bi,Sb) Te (CBST) grown on an uncompensated antiferromagnetic insulator Al-doped Cr O .

View Article and Find Full Text PDF

Magnetic skyrmions exhibit unique, technologically relevant pseudo-particle behaviors which arise from their topological protection, including well-defined, 3D dynamic modes that occur at microwave frequencies. During dynamic excitation, spin waves are ejected into the interstitial regions between skyrmions, creating the magnetic equivalent of a turbulent sea. However, since the spin waves in these systems have a well-defined length scale, and the skyrmions are on an ordered lattice, ordered structures from spin-wave interference can precipitate from the chaos.

View Article and Find Full Text PDF

Non-collinear antiferromagnets (AFMs) are an exciting new platform for studying intrinsic spin Hall effects (SHEs), phenomena that arise from the materials' band structure, Berry phase curvature, and linear response to an external electric field. In contrast to conventional SHE materials, symmetry analysis of non-collinear antiferromagnets does not forbid non-zero longitudinal and out-of-plane spin currents with polarization and predicts an anisotropy with current orientation to the magnetic lattice. Here, multi-component out-of-plane spin Hall conductivities are reported in L1 -ordered antiferromagnetic PtMn thin films that are uniquely generated in the non-collinear state.

View Article and Find Full Text PDF

Electric field control of the exchange bias effect across ferromagnet/antiferromagnet (FM/AF) interfaces has offered exciting potentials for low-energy-dissipation spintronics. In particular, the solid-state magneto-ionic means is highly appealing as it may allow reconfigurable electronics by transforming the all-important FM/AF interfaces through ionic migration. In this work, we demonstrate an approach that combines the chemically induced magneto-ionic effect with the electric field driving of nitrogen in the Ta/CoFe/MnN/Ta structure to electrically manipulate exchange bias.

View Article and Find Full Text PDF

Topological surface states are a new class of electronic states with novel properties, including the potential for annihilation between surface states from two topological insulators at a common interface. Here, we report the annihilation and creation of topological surface states in the SnTe/Cr(BiSb)Te (CBST) heterostructures as evidenced by magneto-transport, polarized neutron reflectometry, and first-principles calculations. Our results show that topological surface states are induced in the otherwise topologically trivial two-quintuple-layers thick CBST when interfaced with SnTe, as a result of the surface state annihilation at the SnTe/CBST interface.

View Article and Find Full Text PDF

The combination of small coercive fields and weak magnetic anisotropy makes soft ferromagnetic films extremely useful for nanoscale devices that need to easily switch spin directions. However, soft ferromagnets are relatively rare, particularly in ultrathin films with thicknesses of a few nanometers or less. We have synthesized large-area, high-quality, ultrathin freestanding LaMnO films on Si and found unexpected soft ferromagnetism along both the in-plane and out-of-plane directions when the film thickness was reduced to 4 nm.

View Article and Find Full Text PDF

Magnetic insulator-topological insulator heterostructures have been studied in search of chiral edge states via proximity induced magnetism in the topological insulator, but these states have been elusive. We identified MgAl_{0.5}Fe_{1.

View Article and Find Full Text PDF

Breaking time-reversal symmetry by introducing magnetic order, thereby opening a gap in the topological surface state bands, is essential for realizing useful topological properties such as the quantum anomalous Hall and axion insulator states. In this work, a novel topological antiferromagnetic (AFM) phase is created at the interface of a sputtered, c-axis-oriented, topological insulator/ferromagnet heterostructure-Bi Te /Ni Fe because of diffusion of Ni in Bi Te (Ni-Bi Te ). The AFM property of the Ni-Bi Te interfacial layer is established by observation of spontaneous exchange bias in the magnetic hysteresis loop and compensated moments in the depth profile of the magnetization using polarized neutron reflectometry.

View Article and Find Full Text PDF

Electrically induced ionic motion offers a new way to realize voltage-controlled magnetism, opening the door to a new generation of logic, sensor, and data storage technologies. Here, we demonstrate an effective approach to magneto-ionically and electrically tune the exchange bias in Gd/NiCoO thin films ( = 0.50 and 0.

View Article and Find Full Text PDF

While being electrically insulating, magnetic insulators can behave as good spin conductors by carrying spin current with excited spin waves. So far, magnetic insulators are utilized in multilayer heterostructures for optimizing spin transport or to form magnon spin valves for reaching controls over the spin flow. In these studies, it remains an intensively visited topic as to what the corresponding roles of coherent and incoherent magnons are in the spin transmission.

View Article and Find Full Text PDF

This work reports the ferromagnetism of topological insulator, (Bi,Sb)Te (BST), with a Curie temperature of approximately 120 K induced by magnetic proximity effect (MPE) of an antiferromagnetic CrSe. The MPE was shown to be highly dependent on the stacking order of the heterostructure, as well as the interface symmetry: Growing CrSe on top of BST results in induced ferromagnetism, while growing BST on CrSe yielded no evidence of an MPE. Cr-termination in the former case leads to double-exchange interactions between Cr surface states and Cr bulk states.

View Article and Find Full Text PDF

Integration of a quantum anomalous Hall insulator with a magnetically ordered material provides an additional degree of freedom through which the resulting exotic quantum states can be controlled. Here, an experimental observation is reported of the quantum anomalous Hall effect in a magnetically-doped topological insulator grown on the antiferromagnetic insulator Cr O . The exchange coupling between the two materials is investigated using field-cooling-dependent magnetometry and polarized neutron reflectometry.

View Article and Find Full Text PDF

Engineering magnetic anisotropy in two-dimensional systems has enormous scientific and technological implications. The uniaxial anisotropy universally exhibited by two-dimensional magnets has only two stable spin directions, demanding 180° spin switching between states. We demonstrate a previously unobserved eightfold anisotropy in magnetic SrRuO monolayers by inducing a spin reorientation in (SrRuO)/(SrTiO) superlattices, in which the magnetic easy axis of Ru spins is transformed from uniaxial 〈001〉 direction ( < 3) to eightfold 〈111〉 directions ( ≥ 3).

View Article and Find Full Text PDF

Electric fields can transform materials with respect to their structure and properties, enabling various applications ranging from batteries to spintronics. Recently electrolytic gating, which can generate large electric fields and voltage-driven ion transfer, has been identified as a powerful means to achieve electric-field-controlled phase transformations. The class of transition metal oxides provide many potential candidates that present a strong response under electrolytic gating.

View Article and Find Full Text PDF

Ferromagnetic metals and insulators are widely used for generation, control, and detection of magnon spin signals. Most magnonic structures are based primarily on either magnetic insulators or ferromagnetic metals, while heterostructures integrating both of them are less explored. Here, by introducing a Pt/yttrium iron garnet (YIG)/permalloy (Py) hybrid structure grown on a Si substrate, we study the magnetic coupling and magnon transmission across the interface of the two magnetic layers.

View Article and Find Full Text PDF

Solid-state ionic approaches for modifying ion distributions in getter/oxide heterostructures offer exciting potentials to control material properties. Here, we report a simple, scalable approach allowing for manipulation of the superconducting transition in optimally doped YBaCuO (YBCO) films via a chemically driven ionic migration mechanism. Using a thin Gd capping layer of up to 20 nm deposited onto 100 nm thick epitaxial YBCO films, oxygen is found to leach from deep within the YBCO.

View Article and Find Full Text PDF

We report the topochemical reduction of epitaxial thin films of the cubic perovskite BaZrO. Reduction with calcium hydride yields n-type conductivity in the films, despite the wide band gap and low electron affinity of the parent material. X-ray diffraction studies show concurrent loss of out-of-plane texture with stronger reducing conditions.

View Article and Find Full Text PDF