A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Engineering Magnetic Anisotropy and Emergent Multidirectional Soft Ferromagnetism in Ultrathin Freestanding LaMnO Films. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The combination of small coercive fields and weak magnetic anisotropy makes soft ferromagnetic films extremely useful for nanoscale devices that need to easily switch spin directions. However, soft ferromagnets are relatively rare, particularly in ultrathin films with thicknesses of a few nanometers or less. We have synthesized large-area, high-quality, ultrathin freestanding LaMnO films on Si and found unexpected soft ferromagnetism along both the in-plane and out-of-plane directions when the film thickness was reduced to 4 nm. We argue that the vanishing magnetic anisotropy between the two directions is a consequence of two coexisting magnetic easy axes in different atomic layers of the LaMnO film. Spectroscopy measurements reveal a change in Mn valence from 3+ in the film interior to approximately 2+ at the surfaces where considerable hydrogen infiltration occurs due to the water dissolving process. First-principles calculations show that protonation of LaMnO decreases the Mn valence and switches the magnetic easy axis from in-plane to out-of-plane as the Mn valence approaches 2+ from its 3+ bulk value. Our work demonstrates that ultrathin freestanding films can exhibit functional properties that are absent in homogeneous materials, concomitant with their convenient compatibility with Si-based devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c11065DOI Listing

Publication Analysis

Top Keywords

magnetic anisotropy
12
ultrathin freestanding
12
soft ferromagnetism
8
freestanding lamno
8
lamno films
8
in-plane out-of-plane
8
magnetic easy
8
films
5
engineering magnetic
4
anisotropy emergent
4

Similar Publications