A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Manipulation of Coupling and Magnon Transport in Magnetic Metal-Insulator Hybrid Structures. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ferromagnetic metals and insulators are widely used for generation, control, and detection of magnon spin signals. Most magnonic structures are based primarily on either magnetic insulators or ferromagnetic metals, while heterostructures integrating both of them are less explored. Here, by introducing a Pt/yttrium iron garnet (YIG)/permalloy (Py) hybrid structure grown on a Si substrate, we study the magnetic coupling and magnon transmission across the interface of the two magnetic layers. We find that within this structure, Py and YIG exhibit an antiferromagnetic coupling field as strong as 150 mT, as evidenced by both magnetometry and polarized neutron reflectometry measurements. By controlling individual layer thicknesses and external fields, we realize parallel and antiparallel magnetization configurations, which are further utilized to control the magnon current transmission. We show that a magnon spin valve with an on:off ratio of approximately 130% can be realized out of this multilayer structure at room temperature through both spin pumping and spin-Seebeck-effect experiments. Owing to the efficient control of magnon current and the compatibility with Si technology, the Pt/YIG/Py hybrid structure could potentially find applications in magnon-based logic and memory devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12054059PMC
http://dx.doi.org/10.1103/physrevapplied.13.061002DOI Listing

Publication Analysis

Top Keywords

coupling magnon
8
ferromagnetic metals
8
magnon spin
8
hybrid structure
8
control magnon
8
magnon current
8
magnon
6
manipulation coupling
4
magnon transport
4
magnetic
4

Similar Publications