5,797,462 results match your criteria: "USA; ASPIRE Center for Sexual and Reproductive Health[Affiliation]"

Angiotensin II (Ang II) releases inflammatory mediators from several cell types. The objective of this study was to investigate the potential of Ang II to induce mRNA expression of inflammatory mediators in primary cultured fibroblast-like cells isolated from gingival and periodontal ligament tissues. A synergistic effect of co-treatment with Ang II and Interleukin-1β (IL1β) on the mRNA expression of inflammatory mediators was explored.

View Article and Find Full Text PDF

Aims: Several diuretic strategies, including furosemide iv boluses (FB) or continuous infusion (FC), are used in acute heart failure (AHF).

Methods And Results: We systematically searched phase 3 randomized clinical trials (RCTs) evaluating diuretic regimens in admitted AHF patients within 48 hours and irrespective of clinical stabilization. We calculated the odds ratio (OR) of FC or FB plus another diuretic (sequential nephron blockade, SNB) compared to FB alone on 24-hour weight loss (WL) and worsening renal function (WRF), with a random-effects model with inverse variance weighting.

View Article and Find Full Text PDF

Protein translation regulation is critical for cellular responses and development, yet how elongation stage disruptions shape these processes remains incompletely understood. Here, we identify a single amino acid substitution (P55Q) in the ribosomal protein RPL-36A of Caenorhabditis elegans that confers complete resistance to the elongation inhibitor cycloheximide (CHX). Heterozygous animals carrying both wild-type RPL-36A and RPL-36A(P55Q) develop normally but show intermediate CHX resistance, indicating a partial dominant effect.

View Article and Find Full Text PDF

Sequestration of Plasmodium falciparum-infected erythrocytes (IE) in the microvasculature is a major virulence determinant. While the sequestration of mature stage parasites (trophozoite and schizonts) to vascular endothelium is well established, the conditions that promote ring-stage IE sequestration is less understood. Here, we observed in ring-stage parasites that febrile exposure increased transcript levels of several exported parasite genes involved in the trafficking of the P.

View Article and Find Full Text PDF

Human parainfluenza virus 2 (HPIV-2) and human parainfluenza virus 4 (HPIV-4) are significant but underappreciated respiratory pathogens, particularly among high-risk populations including children, the elderly, and immunocompromised individuals. In this study, we sequenced 101 HPIV-2 and HPIV-4 genomes from respiratory samples collected in western Washington State and performed comprehensive evolutionary analyses using both new and publicly available sequences. Phylogenetic and phylodynamic analyses revealed that both HPIV-2 and HPIV-4 evolve at significantly faster rates compared to mumps virus, a reference human orthorubulavirus.

View Article and Find Full Text PDF

Background: Choosing the appropriate implants for reconstruction in revision TKA is essential for long-term fixation. While cones and augments are routinely utilized to address tibial defects, the effect of augment location and size on the biomechanical stability of revision TKA constructs and the indications for the use of metaphyseal cones are not known.

Questions/purposes: Is the risk of cement-implant debonding of revision TKA constructs impacted by the thickness and location (medial versus bicompartmental) of tibial augments and the presence of metaphyseal cones during (1) a demanding daily activity like stair ascent and (2) torsional loads?

Methods: Under institutional review board approval, we developed patient-specific finite-element models of revision TKA from four patients (three males and one female, ages 50 to 80 years, BMI 27 to 37 kg/m2) who underwent two-stage revision and had a CT scan with no metal artifact after first-stage implant removal.

View Article and Find Full Text PDF

We investigated the impact of short-term dietary nitrate supplementation on sympathetic neural responses to isometric exercise in postmenopausal women. Ten healthy women aged 64±2 (SD) years participated in this randomized, placebo-controlled, double-blind, crossover study. All participants underwent two-week beetroot juice (BRJ: 800 mg nitrate/day) and placebo (nitrate-depleted BRJ) interventions with ≥14 days of wash-out.

View Article and Find Full Text PDF

Exponential Quantum Speedup for Simulating Classical Lattice Dynamics.

Phys Rev Lett

August 2025

The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Simulating large-scale lattice dynamics remains a long-standing challenge in condensed matter and materials science, where mechanical and thermal behaviors arise from coupled vibrational modes. We introduce a quantum algorithm that reformulates general harmonic lattice dynamics as a time-dependent Schrödinger equation governed by a sparse, Hermitian Hamiltonian. This enables the use of Hamiltonian simulation techniques on quantum devices, offering exponential speedup in the number of atoms N.

View Article and Find Full Text PDF

Models of how things spread often assume that transmission mechanisms are fixed over time. However, social contagions-the spread of ideas, beliefs, innovations-can lose or gain in momentum as they spread: ideas can get reinforced, beliefs strengthened, products refined. We study the impacts of such self-reinforcement mechanisms in cascade dynamics.

View Article and Find Full Text PDF

We show that the ground state of a weakly charged two-dimensional electron-hole fluid in a strong magnetic field is a broken translation symmetry state with interpenetrating lattices of localized vortices and antivortices in the electron-hole-pair field. The vortices and antivortices carry fractional charges of equal sign but unequal magnitude and have a honeycomb-lattice structure that contrasts with the triangular lattices of superconducting electron-electron-pair vortex lattices. We predict that increasing charge density or a weakening magnetic field drives a vortex delocalization transition that would be signaled experimentally by an abrupt increase in counterflow transport resistance.

View Article and Find Full Text PDF

Meniscus-Driven Modulation of Surface Wave Transmission across a Barrier.

Phys Rev Lett

August 2025

University of Mississippi, National Center for Physical Acoustics and Department of Physics and Astronomy, University, Mississippi 38677, USA.

Meniscus oscillations at interfaces between liquids, solids, and air significantly impact fluid dynamics and control. While idealized models exist, experimental data on capillary-gravity wave scattering involving meniscus effects remain limited. In this Letter, we systematically measured wave transmission past a surface-piercing barrier, focusing on meniscus effects.

View Article and Find Full Text PDF

Imaging Valence Electron Rearrangement in a Chemical Reaction Using Hard X-Ray Scattering.

Phys Rev Lett

August 2025

Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.

We have observed the signatures of valence electron rearrangement in photoexcited ammonia using ultrafast hard x-ray scattering. Time-resolved x-ray scattering is a powerful tool for imaging structural dynamics in molecules because of the strong scattering from the core electrons localized near each nucleus. Such core-electron contributions generally dominate the differential scattering signal, masking any signatures of rearrangement in the chemically important valence electrons.

View Article and Find Full Text PDF

Toward a Robust Confirmation or Refutation of the Sterile-Neutrino Explanation of Short-Baseline Anomalies.

Phys Rev Lett

August 2025

Texas A&M University, Department of Physics and Astronomy, Mitchell Institute for Fundamental Physics and Astronomy, College Station, Texas 77843, USA.

The sterile neutrino interpretation of the LSND and MiniBooNE neutrino anomalies is currently being tested at three liquid argon detectors: MicroBooNE, SBND, and ICARUS. It has been argued that a degeneracy between ν_{μ}→ν_{e} and ν_{e}→ν_{e} oscillations significantly degrades their sensitivity to sterile neutrinos. Through an independent study, we show two methods to eliminate this concern.

View Article and Find Full Text PDF

We investigate the quasiparticles of a single nodal ring semimetal SrAs_{3} through axis-resolved magneto-optical measurements. We observe three types of Landau levels scaling as ϵ∼sqrt[B], ϵ∼B^{2/3}, and ϵ∼B that correspond to Dirac, semi-Dirac, and classical fermions, respectively. Through theoretical analysis, we identify the distinct origins of these three types of fermions present within the nodal ring.

View Article and Find Full Text PDF

We present the first results from the Quantum Resolution-Optimized Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE). The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption, and is sensitive to energy deposits as low as 0.11 eV.

View Article and Find Full Text PDF

Positive Neutrino Masses with DESI DR2 via Matter Conversion to Dark Energy.

Phys Rev Lett

August 2025

National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang District, Beijing, 100101, Peoples Republic of China.

The Dark Energy Spectroscopic Instrument (DESI) is a massively parallel spectroscopic survey on the Mayall telescope at Kitt Peak, which has released measurements of baryon acoustic oscillations determined from over 14 million extragalactic targets. We combine DESI Data Release 2 with CMB datasets to search for evidence of matter conversion to dark energy (DE), focusing on a scenario mediated by stellar collapse to cosmologically coupled black holes (CCBHs). In this physical model, which has the same number of free parameters as ΛCDM, DE production is determined by the cosmic star formation rate density (SFRD), allowing for distinct early- and late-time cosmologies.

View Article and Find Full Text PDF

Ultrafast light-driven strongly correlated antiferromagnetic insulators, such as prototypical NiO with a large Mott energy gap ≃4  eV, have recently attracted experimental attention using photons of both subgap [H. Qiu et al., Nat.

View Article and Find Full Text PDF

Magnetic heat capacity measurements of a high-quality single crystal of the dipole-octupole pyrochlore Ce_{2}Hf_{2}O_{7} down to a temperature of T=0.02  K are reported. These show a two-peaked structure, with a Schottky-like peak at T_{1}∼0.

View Article and Find Full Text PDF

Interlocked and polycatenated material systems, consisting of discrete, nonconvex particles linked to their nearest neighbors, such as chainmail fabrics, have been shown to undergo a jamming transition that increases their rigidity under boundary compression. This rigidity transition is associated with an increase in contact number between particles. In architected materials, rigidity is described by theories such as the Maxwell criterion.

View Article and Find Full Text PDF

Multimessenger Detection of Black Hole Binaries in Dark Matter Spikes.

Phys Rev Lett

August 2025

The Johns Hopkins University, William H. Miller III Department of Physics and Astronomy, Baltimore, Maryland 21218, USA.

We investigate the inspiral of a high mass-ratio black hole binary located in the nucleus of a galaxy, where the primary central black hole is surrounded by a dense dark matter spike formed through accretion during the black hole growth phase. Within this spike, dark matter undergoes strong self-annihilation, producing a compact source of γ-ray radiation that is highly sensitive to spike density, while the binary emits gravitational waves at frequencies detectable by LISA. As the inspiraling binary interacts with the surrounding dark matter particles, it alters the density of the spike, thereby influencing the γ-ray flux from dark matter annihilation.

View Article and Find Full Text PDF