Meniscus-Driven Modulation of Surface Wave Transmission across a Barrier.

Phys Rev Lett

University of Mississippi, National Center for Physical Acoustics and Department of Physics and Astronomy, University, Mississippi 38677, USA.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Meniscus oscillations at interfaces between liquids, solids, and air significantly impact fluid dynamics and control. While idealized models exist, experimental data on capillary-gravity wave scattering involving meniscus effects remain limited. In this Letter, we systematically measured wave transmission past a surface-piercing barrier, focusing on meniscus effects. By varying the barrier's surface properties and the wave frequencies, we explored how meniscus deformation influences wave transmission. The results are compared with simulations and limiting-case theories. We interpret that the meniscus water column formed beneath the barrier enhances flow coupling and increases wave transmission, while meniscus surface bending suppresses it by constraining motion. These competing effects explain the observed frequency and contact angle dependencies. Our findings provide insights into how meniscus dynamics govern surface wave behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1103/qb1x-qv6xDOI Listing

Publication Analysis

Top Keywords

wave transmission
16
surface wave
8
meniscus effects
8
wave
7
meniscus
7
meniscus-driven modulation
4
surface
4
modulation surface
4
transmission
4
transmission barrier
4

Similar Publications

Meniscus-Driven Modulation of Surface Wave Transmission across a Barrier.

Phys Rev Lett

August 2025

University of Mississippi, National Center for Physical Acoustics and Department of Physics and Astronomy, University, Mississippi 38677, USA.

Meniscus oscillations at interfaces between liquids, solids, and air significantly impact fluid dynamics and control. While idealized models exist, experimental data on capillary-gravity wave scattering involving meniscus effects remain limited. In this Letter, we systematically measured wave transmission past a surface-piercing barrier, focusing on meniscus effects.

View Article and Find Full Text PDF

Introduction: This study analyzed the age and sex distribution of COVID-19 patients during the initial three COVID-19 waves in Puducherry, India, from August 2020 to March 2022, to understand the distribution of infection across different demographic groups.

Methods: The disease surveillance program conducted at ICMR-Vector Control Research Centre processed 79,705 Throat Swab/Nasal Swab (TSNS) samples received from various institutions in Puducherry through the Integrated Disease Surveillance Program (IDSP). Real-time reverse-transcriptase-polymerase chain reaction (rRT-PCR) was performed following approved protocols.

View Article and Find Full Text PDF

Introduction: The pathological mechanism of sepsis-related acute lung injury (ALI) is closely linked to mitochondrial dysfunction and pyroptosis. Although low-dose extracorporeal shock wave (SW) therapy has been widely utilized in tissue and organ injury repair, its role in sepsis-related ALI remains unclear. This study aimed to elucidate the regulatory mechanisms of SW on mitochondrial pyroptosis crosstalk in septic ALI.

View Article and Find Full Text PDF

To contribute to the circular and sustainable economy framework, waste tire rubber reclamation by extracting carbon black through pyrolysis and heat treatment and then ingeniously designing it as an electromagnetic wave absorbing (EWA) material is proposed herein. The results showed that the pyrolysis-recycled carbon black (RCB) was heterogeneous with multiple interfaces, making it suitable for EWA application. The RCB was processed at 500 °C-1000 °C to study the changes in the composite and microstructure as well as the EWA properties.

View Article and Find Full Text PDF

Aircraft confronting harsh meteorological conditions and radar detection environments during high-altitude flights face significant risks, which can threaten flight safety. This study designs and fabricates a novel Jerusalem cross-inspired Frequency Selective Surface (FSS). Initially, rGO powder with an optimized reduction degree is synthesized as the conductive filler.

View Article and Find Full Text PDF