224 results match your criteria: "Institute of Polymer Science and Technology[Affiliation]"

The use of devulcanized tire powder as an effective reinforcement in self-healing styrene-butadiene rubber (SBR) compounds has been investigated for the first time in this work. For this purpose, the evolution of the microstructure of the rubber from end-of-life tires (ELTs) was studied during granulation, grinding and devulcanization through an exhaustive characterization work in order to relate the final microstructure with the mechanical response of the repaired systems. Different morphologies (particle size distribution and specific surface area) obtained by cryogenic and water jet grinding processes, as well as different devulcanization techniques (thermo-mechanical, microwave, and thermo-chemical), were analyzed.

View Article and Find Full Text PDF

Development of bioactive catechol functionalized nanoparticles applicable for 3D bioprinting.

Mater Sci Eng C Mater Biol Appl

December 2021

Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.

Efficient wound treatments to target specific events in the healing process of chronic wounds constitute a significant aim in regenerative medicine. In this sense, nanomedicine can offer new opportunities to improve the effectiveness of existing wound therapies. The aim of this study was to develop catechol bearing polymeric nanoparticles (NPs) and to evaluate their potential in the field of wound healing.

View Article and Find Full Text PDF

The Grubbs G-I or G-II catalyst gives the ruthenium ethoxy carbene complex, which catalyzes ring-opening cross metathesis (ROCM) of a strained cyclic alkene to give a diene where one of the two alkene moieties in the product contains an ethoxy substituent. No polymeric products are detected. Hydrocarbons such as parent norbornene or substituted cyclopropenes can proceed with the reaction smoothly.

View Article and Find Full Text PDF

Additive manufacturing (AM) is a disruptive technology that enables one to manufacture complex structures reducing both time and manufacturing cost. Among the materials commonly used for AM, thermoplastic elastomers (TPE) are of high interest due to their energy absorption capacity, energy efficiency, cushion factor or damping capacity. Previous investigations have exclusively focused on the optimization of the printing parameters of commercial TPE filaments and the structures to analyse the mechanical properties of the 3D printed parts.

View Article and Find Full Text PDF

Although aminoglycosides are one of the common classes of antibiotics that have been widely used for treating infections caused by pathogenic bacteria, the evolution of bacterial resistance mechanisms and their inherent toxicity have diminished their applicability. Biocompatible carrier systems can help sustain and control the delivery of antibacterial compounds while reducing the chances of antibacterial resistance or accumulation in unwanted tissues. In this study, novel chitosan gel beads were synthesized by a double ionic co-crosslinking mechanism.

View Article and Find Full Text PDF

The combination of vulcanizing agents is an adequate strategy to develop multiple networks that consolidate the best of different systems. In this research, sulfur (S), and zinc oxide ( ZnO) were combined as vulcanizing agents in a matrix of carboxylated nitrile rubber (XNBR). The resulting dual network improved the abrasion resistance of up to ~15% compared to a pure ionically crosslinked network, and up to ~115% compared to a pure sulfur-based covalent network.

View Article and Find Full Text PDF

The development of bio-glues is still a challenging task, regarding adhesion on wet surfaces; often, high performance and adaption to complex geometries need to be combined in one material. Here, we report biocompatible adhesives obtained by blending regenerated silk (RS) with a soluble plant-derived polyphenol (i.e.

View Article and Find Full Text PDF

Chitosan - Rosmarinic acid conjugates with antioxidant, anti-inflammatory and photoprotective properties.

Carbohydr Polym

December 2021

Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain. Electronic address:

Rosmarinic acid is an attractive candidate for skin applications because of its antioxidant, anti-inflammatory, and photoprotective functions, however, its poor bioavailability hampers its therapeutic outcome. In this context, synthesis of polymer conjugates is an alternative to enlarge its applications. This work describes the synthesis of novel water-soluble chitosan - rosmarinic acid conjugates (CSRA) that have great potential for skin applications.

View Article and Find Full Text PDF

Stem-cell-derived extracellular vesicles (EVs) have demonstrated multiple beneficial effects in preclinical models of cardiac diseases. However, poor retention at the target site may limit their therapeutic efficacy. Cardiac extracellular matrix hydrogels (cECMH) seem promising as drug-delivery materials and could improve the retention of EVs, but may be limited by their long gelation time and soft mechanical properties.

View Article and Find Full Text PDF

Hyaluronic acid-fibrin hydrogels show improved mechanical stability in dermo-epidermal skin substitutes.

Mater Sci Eng C Mater Biol Appl

September 2021

Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. Electronic address:

Human plasma-derived bilayered skin substitutes have been successfully used by our group in different skin tissue engineering applications. However, several issues associated with their poor mechanical properties were observed, and they often resulted in rapid contraction and degradation. In this sense, hydrogels composed of plasma-derived fibrin and thiolated-hyaluronic acid (HA-SH, 0.

View Article and Find Full Text PDF

Antitumor Activity of Nanoparticles Loaded with PHT-427, a Novel AKT/PDK1 Inhibitor, for the Treatment of Head and Neck Squamous Cell Carcinoma.

Pharmaceutics

August 2021

Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain.

Currently, new treatments are required to supplement the current standard of care for head and neck squamous cell carcinoma (HNSCC). The phosphatidylinositol3-kinase (PI3K) signaling pathway is commonly altered and activated in HNSCC. PHT-427 is a dual PI3K-mammalian target of the AKT/PDK1 inhibitor; however, to the best of our knowledge, the effect of the PHT-427 inhibitor on HNSCC has not been investigated.

View Article and Find Full Text PDF

Despite the use of therapeutic ultrasound in the treatment of soft tissue pathologies, there remains some controversy regarding its efficacy. In order to develop new treatment protocols, it is a common practice to carry out in vitro studies in cell cultures before conducting animal tests. The lack of reproducibility of the experimental results observed in the literature concerning in vitro experiments motivated us to establish a methodology for characterizing the acoustic field in culture plate wells.

View Article and Find Full Text PDF

Due to the preservative, antioxidant, antimicrobial, and therapeutic properties of oregano essential oil (OEO), it has received an emerging interest for biotechnological and biomedical applications. However, stability and bioactivity can be compromised by its natural volatile and hydrophobic nature, and by external factors including light, heat, or oxygen. Therefore, micro- and nanoencapsulation are being employed to guarantee oregano oil protection from outside aggressions and to maximize its potential.

View Article and Find Full Text PDF

Modulation of Crystallinity through Radiofrequency Electromagnetic Fields in PLLA/Magnetic Nanoparticles Composites: A Proof of Concept.

Materials (Basel)

July 2021

Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, 28933 Madrid, Spain.

To modulate the properties of degradable implants from outside of the human body represents a major challenge in the field of biomaterials. Polylactic acid is one of the most used polymers in biomedical applications, but it tends to lose its mechanical properties too quickly during degradation. In the present study, a way to reinforce poly-L lactic acid (PLLA) with magnetic nanoparticles (MNPs) that have the capacity to heat under radiofrequency electromagnetic fields (EMF) is proposed.

View Article and Find Full Text PDF

The synthesis of poly(urethane-urea) (PUUs) bearing deactivated diamines within the backbone polymer chain is presented. Several deactivated diamines present interesting properties for several applications in the biomaterial field due to their attractive biocompatibility. Through an activation with Chloro-(trimethyl)silane (Cl-TMS) during the polymerization reaction, the reactivity of these diamines against diisocyanates was triggered, leading to PUUs with high performance.

View Article and Find Full Text PDF

The prognosis of patients with recurrent or metastatic head and neck squamous cell cancer (HNSCC) is generally poor. New treatments are required to supplement the current standard of care. Paclitaxel (PTX), an effective chemotherapeutic for HNSCC, has serious side effects.

View Article and Find Full Text PDF

Development, characterization and sterilisation of Nanocellulose-alginate-(hyaluronic acid)- bioinks and 3D bioprinted scaffolds for tissue engineering.

Mater Sci Eng C Mater Biol Appl

July 2021

NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 0100

3D-bioprinting is an emerging technology of high potential in tissue engineering (TE), since it shows effective control over scaffold fabrication and cell distribution. Biopolymers such as alginate (Alg), nanofibrillated cellulose (NC) and hyaluronic acid (HA) offer excellent characteristics for use as bioinks due to their excellent biocompatibility and rheological properties. Cell incorporation into the bioink requires sterilisation assurance, and autoclave, β-radiation and γ-radiation are widely used sterilisation techniques in biomedicine; however, their use in 3D-bioprinting for bioinks sterilisation is still in their early stages.

View Article and Find Full Text PDF

Study of the effect of the addition of plasticizers on the physical properties of biodegradable films based on kefiran for potential application as food packaging.

Food Chem

October 2021

Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo de Polímeros, Chile. Electronic address:

Spectroscopies analysis indicated that kefiran contains branched hexasaccharide repeating units. Neat kefiran films, 2 and 5% w/w of glycerol, d-glucitol, d-galactitol, d-mannitol, and d-limonene were incorporated as plasticizers. Neat and plasticized kefiran films were characterized by physical, thermal, mechanical, optical, and water solubilization properties.

View Article and Find Full Text PDF

Hyaluronic acid (HA)-coated naproxen-nanoparticles selectively target breast cancer stem cells through COX-independent pathways.

Mater Sci Eng C Mater Biol Appl

May 2021

Biomaterials Group, Institute of Polymer Science and Technology (ICTP-CSIC), 28006 Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain. Electronic address:

Cytotoxic chemotherapy continues to be the main therapeutic option for patients with metastatic breast cancer. Several studies have reported a significant association between chronic inflammation, carcinogenesis and the presence of cancer stem cells (CSC). We hypothesized that the use of non-steroidal anti-inflammatory drugs targeted to the CSC population could help reducing tumor progression and dissemination in otherwise hard to treat metastatic breast cancer.

View Article and Find Full Text PDF

Natural polymers have been widely used for biomedical applications in recent decades. They offer the advantages of resembling the extracellular matrix of native tissues and retaining biochemical cues and properties necessary to enhance their biocompatibility, so they usually improve the cellular attachment and behavior and avoid immunological reactions. Moreover, they offer a rapid degradability through natural enzymatic or chemical processes.

View Article and Find Full Text PDF

Until nowadays, the concept of the 3Rs (Reduce, Reuse, Recycle) has tried to develop responsible consumption habits. Nonetheless, the rise of ecological thinking has generated the appearance of four new Rs in addition to these basic 3Rs; the currently 7Rs (Reduce, Reuse, Recycle, Redesign, Renew, Repair and Recover) which refer to the actions necessary to achieve the change towards a circular economy (CE) model. This model aims at extending the lifetime of the resources through their rational and efficient use to generate value repeatedly, reducing costs and waste.

View Article and Find Full Text PDF

The first-line treatment of osteoarthritis is based on anti-inflammatory drugs, the most currently used being nonsteroidal anti-inflammatory drugs, selective cyclooxygenase 2 (COX-2) inhibitors and corticoids. Most of them present cytotoxicity and low bioavailability in physiological conditions, making necessary the administration of high drug concentrations causing several side effects. The goal of this work was to encapsulate three hydrophobic anti-inflammatory drugs of different natures (celecoxib, tenoxicam and dexamethasone) into core-shell terpolymer nanoparticles with potential applications in osteoarthritis.

View Article and Find Full Text PDF

Amphiphilic polymeric nanoparticles encapsulating curcumin: Antioxidant, anti-inflammatory and biocompatibility studies.

Mater Sci Eng C Mater Biol Appl

February 2021

Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain.

Oxidative stress and inflammation are two related processes common to many diseases. Curcumin is a natural compound with both antioxidant and anti-inflammatory properties, among others, that is recently being used as a natural occurring product alternative to traditional drugs. However, it has a hydrophobic nature that compromises its solubility in physiological fluids and its circulation time and also presents cytotoxicity problems in its free form, limiting the range of concentrations to be used.

View Article and Find Full Text PDF

Human mesenchymal stem cells (hMSCs) are an attractive source for cell therapies because of their multiple beneficial properties, i.e. via immunomodulation and secretory factors.

View Article and Find Full Text PDF

Poly(itaconic acid) (PIA) was synthesized via conventional radical polymerization. Then, functionalization of PIA was carried out by an esterification reaction with the heterocyclic groups of 1,3-thiazole and posterior quaternization by N-alkylation reaction with iodomethane. The modifications were confirmed by Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (H-NMR), as well as ζ-potential measurements.

View Article and Find Full Text PDF