Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stem-cell-derived extracellular vesicles (EVs) have demonstrated multiple beneficial effects in preclinical models of cardiac diseases. However, poor retention at the target site may limit their therapeutic efficacy. Cardiac extracellular matrix hydrogels (cECMH) seem promising as drug-delivery materials and could improve the retention of EVs, but may be limited by their long gelation time and soft mechanical properties. Our objective was to develop and characterize an optimized product combining cECMH, polyethylene glycol (PEG), and EVs (EVs-PEG-cECMH) in an attempt to overcome their individual limitations: long gelation time of the cECMH and poor retention of the EVs. The new combined product presented improved physicochemical properties (60% reduction in half gelation time, < 0.001, and threefold increase in storage modulus, < 0.01, vs. cECMH alone), while preserving injectability and biodegradability. It also maintained in vitro bioactivity of its individual components (55% reduction in cellular senescence vs. serum-free medium, < 0.001, similar to EVs and cECMH alone) and increased on-site retention in vivo (fourfold increase vs. EVs alone, < 0.05). In conclusion, the combination of EVs-PEG-cECMH is a potential multipronged product with improved gelation time and mechanical properties, increased on-site retention, and maintained bioactivity that, all together, may translate into boosted therapeutic efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431142PMC
http://dx.doi.org/10.3390/ijms22179226DOI Listing

Publication Analysis

Top Keywords

gelation time
20
cardiac extracellular
8
extracellular matrix
8
polyethylene glycol
8
improved gelation
8
extracellular vesicles
8
poor retention
8
therapeutic efficacy
8
retention evs
8
long gelation
8

Similar Publications

Conventional gelatin's gel-to-sol transition upon heating restricts its utility in biomedical applications that benefit from a gel state at physiological temperatures such as Pluronic F127 and poly(NIPAAm). Herein, we present "rev-Gelatin", a gelatin engineered with reverse thermo-responsive properties that undergoes a sol-to-gel transition as temperature rises from ambient to body temperature. Inspired by the phase dynamics of common materials like candy and ice cubes, whose surfaces soften or partially melt under warming, facilitating inter-object adhesion- rev-Gelatin leverages this concept to achieve fluidity at room temperature for easy injectability.

View Article and Find Full Text PDF

Recent Advances in Oral Gel Drug Delivery System: A Polymeric Approach.

Drug Dev Ind Pharm

September 2025

Department of Pharmaceutics, Mallige College of Pharmacy, Silvepura, Bangalore -560090.

ObjectivesThis review aims to explore gelling drug delivery systems with emphasis on formulation strategies, gelation mechanisms, administration routes, and therapeutic benefits. It also seeks to understand the role of different polymers in achieving optimal gelation and drug release profiles. Additionally, the review aims to identify current research gaps and highlight potential areas for future development and clinical translation.

View Article and Find Full Text PDF

The objective of this study was to investigate the enhancement mechanism of low-frequency magnetic field (LF-MF) on the gelation and structures of potato protein-linseed oil emulsion gel. Results indicated that the gel strength and water holding capacity of the gel induced by 6 mT LF-MF intensity were significantly increased from 0.33 N‧mm and 42.

View Article and Find Full Text PDF

The insight in wheat starch entanglement behavior and its effect on starch gel in aqueous solution.

Carbohydr Polym

November 2025

State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

The objective of this study is to investigate the behavior of starch entanglement and to elucidate the starch gelation process from the entanglement perspective. This study established a starch entanglement system based on overlap, entanglement, and concentrated concentrations in aqueous solution. Select the temperature at which starch is prone to form gel (4 °C) and the temperature at which starch begins to gelatinize (60 °C) for entanglement.

View Article and Find Full Text PDF

This study investigates the extraction, optimization, and characterization of pectin from pistachio industry waste (PIW) using microwave-assisted subcritical water extraction (MASWE) without acid. Two different low-methoxyl pectins (LMP) were observed. The first pectin variant (MASWE100) was extracted at a pressure of 3 MPa, a temperature of 100 °C, and an irradiation time of 4 min.

View Article and Find Full Text PDF