817 results match your criteria: "Institute of Applied Mechanics[Affiliation]"

An atmospheric pressure plasma jet (APPJ) is used to process electrochemically deposited NiFe on carbon paper (NiFe/CP). The reactive oxygen and nitrogen species (RONs) of the APPJ modify the surface properties, chemical bonding types, and oxidation states of the material at the self-sustained temperature of the APPJ. The APPJ treatment further enhances the hydrophilicity and creates a higher disorder level in the carbon material.

View Article and Find Full Text PDF

Accurately evaluating the local biomechanics of arterial wall is crucial for diagnosing and treating arterial diseases. Indentation measurement can be used to evaluate the local mechanical properties of the artery. However, the effects of the indenter's geometric structure and the analysis theory on measurement results remain uncertain.

View Article and Find Full Text PDF

The effects of Si addition on the microstructures and properties of CoCrNi medium-entropy alloy (MEA) were systematically investigated. The CrCoNiSi MEA possesses a single face-centered cubic (FCC) phase when x is less than 0.3 and promotes solution strengthening, while the crystal structure shows a transition to the FCC+σ phase structure when x = 0.

View Article and Find Full Text PDF

Preparation and Modeling of Graphene Bubbles to Obtain Strain-Induced Pseudomagnetic Fields.

Materials (Basel)

June 2024

Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China.

It has been both theoretically predicted and experimentally demonstrated that strain can effectively modulate the electronic states of graphene sheets through the creation of a pseudomagnetic field (PMF). Pressurizing graphene sheets into bubble-like structures has been considered a viable approach for the strain engineering of PMFs. However, the bubbling technique currently faces limitations such as long manufacturing time, low durability, and challenges in precise control over the size and shape of the pressurized bubble.

View Article and Find Full Text PDF

The cerebral vasculature is formed of an intricate network of blood vessels over many different length scales. Changes in their structure and connection are implicated in multiple cerebrovascular and neurological disorders. In this study, we present a novel approach to the quantitative analysis of the cerebral macrovasculature using computational and mathematical tools in a large dataset.

View Article and Find Full Text PDF

Grain boundary (GB) precipitation-induced cracking is a significant issue for S31254 super austenitic stainless steel during hot working. Investigating the deformation behavior based on precipitate morphology and distribution is essential. In this study, continuous smaller and intermittent larger precipitates were obtained through heat treatments at 950 °C and 1050 °C.

View Article and Find Full Text PDF

Engineered artificial minerals (EnAMs) are the core of a new concept of designing scavenger compounds for the recovery of critical elements from slags. It requires a fundamental understanding of solidification from complex oxide melts. Ion diffusivity and viscosity play vital roles in this process.

View Article and Find Full Text PDF

Cutaneous melanoma is a lethal skin cancer variant with pronounced aggressiveness and metastatic potential. However, few targeted medications inhibit the progression of melanoma. Ganoderma lucidum, which is a type of mushroom, is widely used as a non-toxic alternative adjunct therapy for cancer patients.

View Article and Find Full Text PDF

Thrombosis, characterized by blood clot formation within vessels, poses a significant medical challenge. Despite extensive research, the development of effective thrombosis therapies is hindered by substantial costs, lengthy development times, and high failure rates in medication commercialization. Conventional pre-clinical models often oversimplify cardiovascular disease, leading to a disparity between experimental results and human physiological responses.

View Article and Find Full Text PDF

We investigate the bound states in the continuum (BICs) in dielectric metasurfaces consisting of a two-part divided triangular hole in the unit cell of a square lattice, with emphasis on the generation, splitting, and merging of BICs. At the smallest height ratio between the upper triangular and the lower trapezoidal holes, the accidental BIC with an extremely large quality factor emerges on an isolated dispersion band at the Brillouin zone center, which is recognized as a polarization singularity (V point) with an integer topological charge. As the height ratio increases, the accidental BIC is split into a pair of circularly polarized states, which are polarization singularities (C points) with half-integer topological charges.

View Article and Find Full Text PDF

Deflection of sliding droplets by dielectrophoresis force on a superhydrophobic surface.

Sci Rep

May 2024

Institute of Applied Mechanics, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City, 106, Taiwan (R.O.C.).

In this study, we experimentally identify the effect of liquid dielectrophoresis (LDEP) force on a superhydrophobic surface in directing the trajectory of moving water droplets across designed interdigitated electrodes and show that this method is capable of rapidly selecting droplets at a high speed (200 mm/s). As the droplets traverse down the surface by the electric field, their deflection on the edge of these electrodes is achieved successively, allowing for the selective manipulation of discrete droplets. A series of experiments were conducted to validate the relationships among droplet deflections, applied electric fields, and dynamic contact angles.

View Article and Find Full Text PDF

In ischaemic stroke, a large reduction in blood supply can lead to the breakdown of the blood-brain barrier and to cerebral oedema after reperfusion therapy. The resulting fluid accumulation in the brain may contribute to a significant rise in intracranial pressure (ICP) and tissue deformation. Changes in the level of ICP are essential for clinical decision-making and therapeutic strategies.

View Article and Find Full Text PDF

This study investigates the surface topography of microfinishing abrasive films and their machining capability on the Nimonic 80A superalloy, a high-performance nickel-based alloy commonly used in aerospace and gas turbine engine applications. Surface analysis was conducted on three abrasive films with nominal grain sizes of 30, 15, and 9 μm, exploring wear patterns, contact frequency, and distribution. To assess the distribution of grain apexes, Voronoi cells were employed.

View Article and Find Full Text PDF

This paper presents geometric analyses of welded frames after free relaxing and vibratory stress relief (VSR). The tested frames were components of a prototype packaging machine. Two types of relaxation were carried out to remove stresses introduced as a result of the welding process.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the performance of single-edge notched concrete beams reinforced with either carbon fiber-reinforced polymer (CFRP) or steel bars, focusing on their failure modes and load-bearing capacities through static and dynamic tests.
  • Static tests revealed that reinforced concrete (RC) beams primarily failed due to shear, while CFRP beams showed bending-shear failure due to weaker bond strength with the concrete.
  • Dynamic impact tests indicated that as impact velocity increased, both beam types transitioned to bending-shear failure; at high velocities, CFRP beams absorbed less energy than RC beams, highlighting their differing mechanical characteristics.
View Article and Find Full Text PDF

Evaluation of Pm2.5 Influence on Human Lung Cancer Cells Using a Microfluidic Platform.

Int J Med Sci

May 2024

International Ph.D. Program in Cell Therapy and Regenerative Medicine, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.

In this study, we developed a microfluidic device that is able to monitor cell biology under continuous PM2.5 treatment. The effects of PM2.

View Article and Find Full Text PDF

Photoluminescence-based biosensor for the detection of antibodies against SARS-CoV-2 virus proteins by ZnO tetrapod structure integrated within microfluidic system.

Sci Total Environ

August 2024

State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania. Electronic address:

This paper reports on development of an optical biosensor for the detection of antibodies against SARS-CoV-2 virus proteins in blood serum. ZnO nanotetrapods with high surface area and stable room temperature photoluminescence (PL) were selected as transducers. Structure and optical properties of the ZnO tetrapods have been studied by XRD, SEM and Raman spectroscopy.

View Article and Find Full Text PDF

Aim: The aim of this in silico study was to investigate the effect of particle size, flow rate, and tidal volume on drug targeting to small airways in patients with mild COPD.

Method: Design of Experiments (DoE) was used with an in silico whole lung particle deposition model for bolus administration to investigate whether controlling inhalation can improve drug delivery to the small conducting airways. The range of particle aerodynamic diameters studied was 0.

View Article and Find Full Text PDF

Shape memory gels have emerged as crucial elements in soft robotics, actuators, and biomedical devices; however, several problems persist, like the trade-off between shape fixity and shape recovery, and the limited temperature range for their application. This article introduces a new class of shape memory hybrid glycerogels (GGs) designed to address these limitations. The well-modulated internal structure of the GGs, facilitated by the Hofmeister salting-out effect, strategically incorporates a higher crystallite content, abundant crosslinking points, and a high elastic modulus.

View Article and Find Full Text PDF
Article Synopsis
  • * Understanding and quantifying CA under various conditions is vital for clinical decision-making, especially when CA is impaired, and this often involves modeling the relationship between CPP and CBF.
  • * The paper discusses the advantages of time-domain methods over Transfer Function Analysis (TFA) for studying CA, emphasizing their flexibility and ability to handle measurement noise and incorporate complex dynamic behaviors.
View Article and Find Full Text PDF

This article presents a comprehensive investigation into pressure rollers utilized in the microfinishing process, covering aspects such as design, experimental properties, compliance, and finite element simulation. Prototype pressure rollers with unconventional elastomer configurations were designed and analyzed to explore their effectiveness in achieving superior surface finishes. Experimental analysis and finite element simulations were conducted to gain insights into the performance and behavior of these pressure rollers under various loading conditions.

View Article and Find Full Text PDF

We propose an integrated methodology for the design and fabrication of 3D micromodels that are suitable for the pore-scale study of transport processes in macroporous materials. The micromodels, that bear the pore-scale characteristics of sandstone, such as porosity, mean pore size, etc, are designed following a stochastic reconstruction algorithm that allows for fine-tuning the porosity and the correlation length of the spatial distribution of the solid material. We then construct a series of 3D micromodels at very fine resolution (i.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the plastic properties of a high-entropy alloy (HfNbTaTiZr) using simulated nanoindentation tests, comparing it to a standard Ta crystal.
  • Key findings reveal that the high-entropy alloys exhibit less dislocation relaxation and minimal dislocation emission compared to the Ta crystal, indicating unique dislocation behavior.
  • The presence of short-range order in the alloy increases its stiffness and hardness, leads to a larger plastic zone and higher dislocation density, and eliminates twinning plasticity, contrasting with the behavior of the elemental Ta under stress.
View Article and Find Full Text PDF

Dynamic cerebral autoregulation (dCA) is the mechanism that describes how the brain maintains cerebral blood flow approximately constant in response to short-term changes in arterial blood pressure. This is known to be impaired in many different pathological conditions, including ischaemic and haemorrhagic stroke, dementia and traumatic brain injury. Many different approaches have thus been used both to analyse and to quantify this mechanism in a range of healthy and diseased subjects, including data-driven models (in both the time and the frequency domain) and biophysical models.

View Article and Find Full Text PDF

Superfinishing with Abrasive Films Featuring Discontinuous Surfaces.

Materials (Basel)

April 2024

Laboratoire de Tribologie et Dynamique des Systemes (LTDS), Ecole Centrale de Lyon, Centre National de la Recherche Scientifique, 69134 Lyon, France.

This study introduces innovative designs for abrasive tools aimed at enhancing surface finishing processes. Prototypes consisting of non-continuous abrasive films with discontinuous surface carriers and abrasive layers were developed to improve the efficiency and effectiveness of the smoothing process. Four distinct abrasive films with varying nominal grain sizes were fabricated to explore the versatility and efficacy of the prototypes.

View Article and Find Full Text PDF