16 results match your criteria: "Department of Physics and Center for Soft Matter and Biological Physics[Affiliation]"

Infrared photodetection of silicon is prevented by the bandgap energy at wavelengths longer than approximately 1100 nm (∼1.12 eV) at room temperature, while silicon is the most used in modern electronics. Of particular interest is the performance of silicon for photodetectors in the infrared region beyond the silicon bandgap.

View Article and Find Full Text PDF

Water is vital for life, and without it, biomolecules and cells cannot maintain their structures and functions. The remarkable properties of water originate from its ability to form hydrogen-bonding networks and dynamics, which the connectivity constantly alters because of the orientation rotation of individual water molecules. Experimental investigation of the dynamics of water, however, has proven challenging due to the strong absorption of water at terahertz frequencies.

View Article and Find Full Text PDF

Cell membranes regulate a wide range of phenomena that are implicated in key cellular functions. Cholesterol, a critical component of eukaryotic cell membranes, is responsible for cellular organization, membrane elasticity, and other critical physicochemical parameters. Besides cholesterol, other lipid components such as phosphatidylinositol 4,5-bisphosphate (PIP2) are found in minor concentrations in cell membranes yet can also play a major regulatory role in various cell functions.

View Article and Find Full Text PDF

Dynamic fluctuations in the hydrogen-bond network of water occur from femto- to nanosecond timescales and provide insight into the structural/dynamical aspects of water at ion-water interfaces. Employing terahertz spectroscopy assisted with molecular dynamics simulations, we study aqueous chloride solutions of five monovalent cations, namely, Li, Na, K, Rb, and Cs. We show that ions modify the behavior of the surrounding water molecules and form interfacial layers of water around them with physical properties distinct from those of bulk water.

View Article and Find Full Text PDF
Article Synopsis
  • EXPANSE is a newly proposed neutron spin echo instrument being developed for the Second Target Station at the Oak Ridge National Laboratory, focusing on high-energy resolution studies of dynamic processes in various materials.
  • It features wide-angle detector banks providing extensive coverage in scattering wavenumbers and a broad wavelength band, enabling simultaneous time domain measurements across a wide range of conditions.
  • The instrument aims to advance research in diverse fields such as soft matter, biological materials, energy materials, and quantum materials, offering capabilities not available in existing neutron scattering instruments in the U.S.
View Article and Find Full Text PDF

Protein dynamics is strongly influenced by the surrounding environment and physiological conditions. Here we employ broadband megahertz-to-terahertz spectroscopy to explore the dynamics of water and myoglobin protein on an extended time scale from femto- to nanosecond. The dielectric spectra reveal several relaxations corresponding to the orientational polarization mechanism, including the dynamics of loosely bound, tightly bound, and bulk water, as well as collective vibrational modes of protein in an aqueous environment.

View Article and Find Full Text PDF

Three-species cyclic predator-prey systems are known to establish spiral waves that allow species to coexist. In this study, we analyze a structured heterogeneous system which gives one species an advantage to escape predation in an area that we refer to as a habitat and study the effect on species coexistence and emerging spatiotemporal patterns. Counterintuitively, the predator of the advantaged species emerges as dominant species with the highest average density inside the habitat.

View Article and Find Full Text PDF

Proteins and water couple dynamically over a wide range of time scales. Motivated by their central role in protein function, protein-water dynamics and thermodynamics have been extensively studied for structured proteins, where correspondence to structural features has been made. However, properties controlling intrinsically disordered protein (IDP)-water dynamics are not yet known.

View Article and Find Full Text PDF

The fast degradation rate and poor wear resistance of magnesium (Mg) alloys in physiological environments have limited their potential usage as next-generation biodegradable orthopedic implant materials. In this work, femtosecond laser shock peening (fs-LSP) was successfully applied to simultaneously improve the surface mechanical, corrosion, and tribocorrosion properties of WE43 Mg alloys in blood bank buffered saline solution at body temperature. Specifically, the treated surfaces of WE43 Mg alloys via fs-LSP with ultralow pulse energy were investigated under different power densities, confining mediums, and absorbent materials.

View Article and Find Full Text PDF

Long-range DNA-water interactions.

Biophys J

November 2021

Department of Physics and Center for Soft Matter and Biological Physics, Blacksburg, Virginia; Macromolecules Innovation Institute, Blacksburg, Virginia; Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia. Electronic address:

DNA functions only in aqueous environments and adopts different conformations depending on the hydration level. The dynamics of hydration water and hydrated DNA leads to rotating and oscillating dipoles that, in turn, give rise to a strong megahertz to terahertz absorption. Investigating the impact of hydration on DNA dynamics and the spectral features of water molecules influenced by DNA, however, is extremely challenging because of the strong absorption of water in the megahertz to terahertz frequency range.

View Article and Find Full Text PDF

Ultrafast, high sensitive, low cost photodetectors operating at room temperature sensitive from the deep-ultraviolet to mid-infrared region remain a significant challenge in optoelectronics. Achievements in traditional semiconductors using cryogenic operation and complicated growth processes prevent the cost-effective and practical application of broadband detectors. Alternative methods towards high-performance photodetectors, hybrid graphene-semiconductor colloidal quantum dots have been intensively explored.

View Article and Find Full Text PDF

Once an epidemic outbreak has been effectively contained through non-pharmaceutical interventions, a safe protocol is required for the subsequent release of social distancing restrictions to prevent a disastrous resurgence of the infection. We report individual-based numerical simulations of stochastic susceptible-infectious-recovered model variants on four distinct spatially organized lattice and network architectures wherein contact and mobility constraints are implemented. We robustly find that the intensity and spatial spread of the epidemic recurrence wave can be limited to a manageable extent provided release of these restrictions is delayed sufficiently (for a duration of at least thrice the time until the peak of the unmitigated outbreak) and long-distance connections are maintained on a low level (limited to less than five percent of the overall connectivity).

View Article and Find Full Text PDF

We numerically investigate the nonequilibrium critical dynamics in three-dimensional anisotropic antiferromagnets in the presence of an external magnetic field. The phase diagram of this system exhibits two critical lines that meet at a bicritical point. The nonconserved components of the staggered magnetization order parameter couple dynamically to the conserved component of the magnetization density along the direction of the external field.

View Article and Find Full Text PDF

The contact process with diffusion (PCPD) defined by the binary reactions B+B→B+B+B, B+B→∅ and diffusive particle spreading exhibits an unusual active to absorbing phase transition whose universality class has long been disputed. Multiple studies have indicated that an explicit account of particle pair degrees of freedom may be required to properly capture this system's effective long-time, large-scale behavior. We introduce a two-species representation for the PCPD in which single particles B and particle pairs A are dynamically coupled according to the stochastic reaction processes B+B→A, A→A+B, A→∅, and A→B+B, with each particle type diffusing independently.

View Article and Find Full Text PDF

Feedback control of surface roughness in a one-dimensional Kardar-Parisi-Zhang growth process.

Phys Rev E

February 2020

Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA and Academy of Integrated Science, Virginia Tech, Blacksburg, Virginia 24061-0563, USA.

Control of generically scale-invariant systems, i.e., targeting specific cooperative features in nonlinear stochastic interacting systems with many degrees of freedom subject to strong fluctuations and correlations that are characterized by power laws, remains an important open problem.

View Article and Find Full Text PDF