Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

How do thousands of cell-surface proteins specify billions of neuronal connections in developing brains? We previously found that inverse expression of a ligand-receptor pair, teneurin-3 (Ten3) and latrophilin-2 (Lphn2) in CA1 and subiculum, instructs CA1→subiculum target selection through Ten3-Ten3 homophilic attraction and Ten3-Lphn2 heterophilic reciprocal repulsions. Here, we leveraged conditional knockouts to systematically demonstrate that these mechanisms generalize to extended hippocampal networks, including entorhinal cortex and hypothalamus. Cooperation between attraction and repulsion differs depending on the order in which developing axons encounter the attractant and repellent subfields. Strikingly, Ten3 and Lphn2 can serve both as ligands for incoming axons and receptors for their own target selection, within the same neuron; Ten3 can be repulsive or attractive as ligand or receptor. Thus, multifunctionality and repeated use, together with recurrent circuit motifs prevalent in the brain, enable one ligand-receptor pair to instruct target selection of many more neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407676PMC
http://dx.doi.org/10.1101/2025.08.13.670207DOI Listing

Publication Analysis

Top Keywords

target selection
16
extended hippocampal
8
ligand-receptor pair
8
ten3-lphn2-mediated target
4
selection
4
selection extended
4
hippocampal network
4
network demonstrates
4
demonstrates repeated
4
repeated strategy
4

Similar Publications

Viscosity-sensitive fluorescent probes based on the hemicyanine for the organelle-specific visualization during autophagy and ferroptosis.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

College of Chemistry, Chemical Engineering and Material Science, Soochow University, No. 199 Ren'Ai Road, Suzhou 215123, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China. Electronic address: g

The dynamic monitoring of cell death processes remains a significant challenge due to the scarcity of highly sensitive molecular tools. In this study, two hemicyanine-based probes (5a-5b) with D-π-A structures were developed for organelle-specific viscosity monitoring. Both probes exhibited correlation with the Förster-Hoffmann viscosity-dependent relationship (R > 0.

View Article and Find Full Text PDF

Three antileishmanial compounds incorporating a butylated hydroxytoluene (BHT) moiety and an acrylate-based Michael acceptor scaffold were rationally designed from the lead structures LQFM064 and LQFM332, which feature a chalcone-derived core. Their activities against Leishmania (L.) amazonensis were evaluated.

View Article and Find Full Text PDF

Background: The ability to access and evaluate online health information is essential for young adults to manage their physical and mental well-being. With the growing integration of the internet, mobile technology, and social media, young adults (aged 18-30 years) are increasingly turning to digital platforms for health-related content. Despite this trend, there remains a lack of systematic insights into their specific behaviors, preferences, and needs when seeking health information online.

View Article and Find Full Text PDF

Programmable Dual-Phase Electrochemical Biosensor Combines Homogeneous CRISPR/Cas12a Activation with Interfacial Poly-G Signaling for miRNA-21 Detection.

Anal Chem

September 2025

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.

Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.

View Article and Find Full Text PDF

Warm temperature-induced autophagy mediates selective degradation of TIMING OF CAB EXPRESSION 1 thus promoting plant thermomorphogenesis.

Plant Cell

September 2025

Department of Plant Sciences, College of Biological Sciences, State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.

Plant thermomorphogenesis is a critical adaptive response to elevated ambient temperatures. The transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) integrates diverse environmental and phytohormone signals to coordinate thermoresponsive growth. However, the cellular mechanisms underlying plant thermomorphogenic growth remain poorly understood.

View Article and Find Full Text PDF