98%
921
2 minutes
20
The ratio of nonsynonymous (d ) to synonymous (d ) substitutions in protein-coding genes is a fundamental metric in molecular evolution to test hypotheses about the relative contributions of genetic drift and natural selection in shaping patterns of protein divergence (Williams et al., 2020). However, interpretation of d /d ratios may be confounded by sequence context and specific substitution models (Hughes, 2007; Kryazhimskiy & Plotkin, 2008). We present MutagenesisForge, a modular command-line tool and Python package for simulating codon-level mutagenesis and calculating d /d under user-specified conditions. At its core is the MutationModel interface which supports specific substitution matrices and ensures consistency across both Exhaustive and Contextual modes of simulation. These modes allow for users to test evolutionary hypotheses or to generate null distributions of d /d across a range of biologically relevant models. As large-scale DNA sequencing data sets continue to be generated both within and between species, MutagenesisForge offers a flexible platform for evolutionary analysis and hypothesis testing of mutational processes in protein-coding genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407930 | PMC |
http://dx.doi.org/10.1101/2025.08.28.667654 | DOI Listing |
Plant J
September 2025
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
Genome imbalance, resulting from varying the dosage of individual chromosomes (aneuploidy), has a more detrimental effect than changes in complete sets of chromosomes (haploidy/polyploidy). This imbalance is likely due to disruptions in stoichiometry and interactions among macromolecular assemblies. Previous research has shown that aneuploidy causes global modulation of protein-coding genes (PCGs), microRNAs, and transposable elements (TEs), affecting both the varied chromosome (cis-located) and unvaried genome regions (trans-located) across various taxa.
View Article and Find Full Text PDFMol Biol Rep
September 2025
ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, India.
Background: Labeo fimbriatus (Bloch, 1795) is a medium-sized South Asian minor carp with ecological significance and emerging aquaculture potential, particularly in polyculture systems with Indian major carps. Despite its wide distribution, it remains underrepresented in phylogenetic studies, and limited genomic resources are available. Here, we report the complete mitochondrial genome sequence of L.
View Article and Find Full Text PDFMicrobiologyopen
October 2025
Department of Agronomy, National Taiwan University, Taipei, Taiwan.
Currently, there is an increasing use of whole-genome sequencing (WGS) studies to investigate the molecular taxonomy, metabolic properties, enzyme capabilities, and bioactive substances of lactic acid bacteria (LAB) species. In this study, the genome of strain Pediococcus pentosaceus BBS1 was sequenced using the Illumina HiSeq. 2500 platform to determine its classification, annotate its main features, and evaluate its safety characteristics.
View Article and Find Full Text PDFJ Hum Genet
September 2025
Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan.
In standard short-read whole-exome sequencing (WES), capture probes are typically designed to target the protein-coding regions (CDS), and regions outside the exons-except for adjacent intronic sequences-are rarely sequenced. Although the majority of known pathogenic variants reside within the CDS as nonsynonymous variants, some disease-causing variants are located in regions that are difficult to detect by WES alone, such as deep intronic variants and structural variants, often requiring whole-genome sequencing (WGS) for detection. Moreover, WES has limitations in reliably identifying pathogenic variants within mitochondrial DNA or repetitive regions.
View Article and Find Full Text PDFArch Microbiol
September 2025
College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China.
Cystofilobasidium infirmominiatum, biotechnologically significant yeast, is increasingly garnering attention due to its superior ability to produce valuable carotenoids and lipids. Nonetheless, until now, the reference genome that governs the biosynthesis of carotenoids and lipids in C. infirmominiatum remains unreported.
View Article and Find Full Text PDF