Molecular Stacking Patterns Enhance Organic Small-Molecule Electrochemical Stability and Enable Ion Separation.

Nano Lett

Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Organic small-molecule materials, leveraging their multisite nature, low molecular weight, sustainability, and element-rich composition, are promising candidates for electrochemical ion extraction applications. However, restricted structural stability, caused by ion-intercalation-induced volume expansion and resulting capacity decay, has hindered further application. Here, based on a structural stacking approach to form an integrated intermolecular force network and lithiophilic ion channels, phenazine (PNZ) is utilized to demonstrate the significant functional relevance of molecular stacking structures in enhancing organic small-molecule electrochemical stability. By fostering integrated intermolecular forces, the uniquely orthogonal molecular-structured PNZ is capable of effectively addressing the challenges related to volume expansion, pulverization, and dissolution. Moreover, this stacking creates ion-transport channels with high affinity for monovalent ions, enhancing Li transport efficiency and enabling selective Li/Mg ion separation. This work provides significant insights into molecular structural stacking characteristics, contributing to the discovery and design of stable and efficient small-molecule materials for electrochemical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.5c03784DOI Listing

Publication Analysis

Top Keywords

organic small-molecule
12
molecular stacking
8
small-molecule electrochemical
8
electrochemical stability
8
ion separation
8
small-molecule materials
8
volume expansion
8
structural stacking
8
integrated intermolecular
8
molecular
4

Similar Publications

Cancer immunotherapy has transformed oncological treatment paradigms, yet tumor resistance and immune evasion continue to limit therapeutic efficacy. Mitochondria-targeting organic sensitizers (MTOSs) represent an emerging class of therapeutic agents that exploit mitochondrial dysfunction as a convergent node for tumor elimination and immune activation. As central regulators of cellular metabolism, apoptotic signaling, and immune cell function, mitochondria serve as critical determinants of tumor progression and the immunological landscape within the tumor microenvironment (TME).

View Article and Find Full Text PDF

Herein, a fluoroalkyl side chain modified A-DA'D-A small molecule acceptor, Y18-F9, was developed to optimize the bulk heterojunction morphology in organic solar cells. The introduction of fluorocarbon chains promotes self-assembly into nanoscale fibrous networks, while the low surface energy drive favorable vertical phase segregation. These synergistic effects lead to enhanced molecular packing, improved charge transport and collection, and reduced recombination losses.

View Article and Find Full Text PDF

Fluorescence imaging has become an indispensable tool in modern biology, enabling the visualisation of dynamic molecular processes with spatial and temporal precision. Traditional strategies rely heavily on the conjugation of large, extrinsic fluorophores, such as green fluorscent protein or organic dyes, through linkers to proteins or peptides of interest. While sometimes effective, these bulky labels can interfere with native protein structure, function, and interactions, limiting their utility in studying sensitive or compact biological systems.

View Article and Find Full Text PDF

Molecular Stacking Patterns Enhance Organic Small-Molecule Electrochemical Stability and Enable Ion Separation.

Nano Lett

September 2025

Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China.

Organic small-molecule materials, leveraging their multisite nature, low molecular weight, sustainability, and element-rich composition, are promising candidates for electrochemical ion extraction applications. However, restricted structural stability, caused by ion-intercalation-induced volume expansion and resulting capacity decay, has hindered further application. Here, based on a structural stacking approach to form an integrated intermolecular force network and lithiophilic ion channels, phenazine (PNZ) is utilized to demonstrate the significant functional relevance of molecular stacking structures in enhancing organic small-molecule electrochemical stability.

View Article and Find Full Text PDF

Small-molecule fluorescent probes have revolutionized fluorescence imaging in both biological research and clinical applications, allowing the exploration of intricate cellular processes and aiding disease diagnosis and treatment. Advances in the designs of molecular probes have led to the development of fluorescent theranostics that combine therapeutic and diagnostic modalities in a single platform. These dual-functional agents enable simultaneous disease diagnosis, treatment, and monitoring, representing an innovative approach to precision medicine.

View Article and Find Full Text PDF