Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are promising molecular biomarkers widely applied in paleoenvironmental reconstructions, including temperature and pH. However, knowledge of the microorganisms responsible for brGDGT production in marine environments remains limited, which constrains the further development and application of brGDGT-based proxies for reconstructing past marine conditions. In this study, both 'living' intact polar lipid-derived brGDGTs (IPL-brGDGTs) and 'fossil' core brGDGTs (CL-brGDGTs), together with bacterial community compositions, were analysed in multiple sediment cores collected along a nearshore-to-offshore transect in the East China Sea (ECS). The potential correlations between brGDGT distributions and bacterial community compositions at varying sediment depths across an environmental gradient were also explored. Results revealed that IPL-brGDGTs were predominantly biosynthesised in situ, whereas CL-brGDGTs reflected a mixture of marine autochthonous production and terrestrial inputs. Potential brGDGT-producing bacteria in nearshore environments were primarily composed of chemolithoautotrophic taxa (e.g., Gammaproteobacteria and Dehalococcoidia) and chemoheterotrophic taxa (e.g., Alphaproteobacteria, Bacilli, and Actinobacteria). In contrast, offshore regions were dominated by chemoheterotrophic hypoxic bacteria (e.g., Anaerolineae and Phycisphaerae) and facultatively anaerobic chemolithoautotrophic bacteria (e.g., Gammaproteobacteria and Desulfobacteria). A significant difference in bacterial community composition and IPL-brGDGT distribution was observed at a depth of 17 cm, likely due to physical disturbance in near-surface sediments, such as wave action, tidal forces, and storm events. Variance partitioning analysis (VPA) revealed that the bacterial community composition alone accounted for 14.1% of the variation in IPL-brGDGTs and 6.5% in CL-brGDGTs, further suggesting that the distribution of brGDGTs is primarily influenced by the composition of the bacterial community in the nearshore-to-offshore sedimentary ecosystems of the ECS. These findings regarding the potential biosynthesis of brGDGTs in coastal habitats advance our understanding of the microbial mechanisms that regulate brGDGT distribution in marine ecosystems. Moreover, they emphasise the importance of considering physical disturbance effects when interpreting sedimentary brGDGT records for paleoenvironmental reconstructions in marginal seas, such as the ECS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383918PMC
http://dx.doi.org/10.3390/biology14081077DOI Listing

Publication Analysis

Top Keywords

bacterial community
20
branched glycerol
8
glycerol dialkyl
8
dialkyl glycerol
8
glycerol tetraethers
8
tetraethers brgdgts
8
sediment cores
8
east china
8
china sea
8
paleoenvironmental reconstructions
8

Similar Publications

Background: Several clinical studies have demonstrated that Helicobacter pylori (Hp) infection may exacerbate the progression of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD); however, the underlying mechanisms remain unclear. This study aims to investigate the characterization of the gastric microbiome and metabolome in relation to the progression of MASLD induced by Hp infection.

Methods: We established a high-fat diet (HFD) obese mouse model, both with and without Hp infection, to compare alterations in serum and liver metabolic phenotypes.

View Article and Find Full Text PDF

Sweet potato foot rot disease caused by Diaporthe destruens (formerly Plenodomus destruens) severely affects the yield and quality of sweet potatoes. To gain basic knowledge on regulating the pathogen using indigenous soil bacteria, the following organic materials were applied to potted soils collected from a sweet potato field contaminated with D. destruens: Kuroihitomi (compost made from shochu waste and chicken manure), Soil-fine (material made by adsorbing shochu waste on rice bran), and rice bran.

View Article and Find Full Text PDF

Host-microbe synergy in pesticide resilience: Rhodococcus-driven fitness compensation in chlorpyrifos-stressed Binodoxys communis.

Pestic Biochem Physiol

November 2025

Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricu

Chlorpyrifos (CPF), a widely used organophosphate insecticide in cotton cultivation for controlling Aphis gossypii, has Binodoxys communis as the primary parasitic natural enemy of A. gossypii. This study evaluated the impact of two sub-lethal CPF concentrations (LC10 and LC30) on key biological parameters across two generations, transcriptomic responses, and symbiotic bacterial communities in B.

View Article and Find Full Text PDF

Evaluation of a nucleic acid preservation protocol for microbiome studies involving samples from the oral cavity.

J Microbiol Methods

September 2025

Dynamics of Respiratory Infections Group, Helmholtz Centre for Infection Research-HZI Braunschweig, Braunschweig, Germany; Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany.

Purpose: The accuracy of oral microbiome research depends significantly on specimen sampling protocols, as well as their storage and preservation. Traditional methods, such as freezing, may not only involve logistical hurdles but can also impact the quality of microbial data, leading to difficulties in the comparability between different studies. This study evaluates the effectiveness of the room temperature nucleic acid preservation protocol using DNA/RNA Shield buffer as compared to standard freezing in preserving oral microbial communities over the course of 7 days.

View Article and Find Full Text PDF

Retrospective analysis of discharge antibiotic selection and 30-day readmission rate for community acquired pneumonia.

Infect Dis Now

September 2025

University of Missouri-Kansas City School of Pharmacy, 2464 Charlotte Street, Kansas City, MO 64108, USA; Centerpoint Medical Center, 19600 East 39th Street, Independence, MO 64057, USA. Electronic address:

Purpose: This study evaluates 30-day community-acquired pneumonia (CAP) readmission rates dependent on discharge antibiotic selection.

Patients And Methods: This is a retrospective, single-center, observational study of patients discharged with a diagnosis of CAP from July 1st, 2022 through June 30th, 2023. Patients included those empirically treated with ceftriaxone plus azithromycin and with documentation of discharge antibiotics.

View Article and Find Full Text PDF