98%
921
2 minutes
20
Gel polymer electrolytes (GPEs) with solvent-in-polymer structure typically encounter a trade-off between ionic conductivity and mechanical properties. This challenge has not been adequately addressed by conventional single-material, miscible polymers, or polymer/ceramic composite electrolytes. Herein, the phase consistency of composite GPE matrix, which contains polymer blends of "soft" poly(vinylidene fluoride-co-hexafluoropropylene) (PVHF) and "hard" polyether-ether-ketone (PEEK), is enhanced by ion-mediated compatibilization through the incorporation of lithium sulfonate groups. In addition, the electrolyte's ionic environment is optimized by the pendent lithium sulfonate positioned at the interface between polymer-rich and solvent-rich domains, thus achieving high ionic conductivity of 1.87 mS cm at 20 °C and 1.28 mS cm at -20 °C via the matrix-assisted conduction. As a consequence, the composite gel electrolyte confers the Li||LiFePO battery with high discharge capacity of 157.0 mAh g at 1 C and capacity retention of 90.7% after 1500 cycles, and superior electrochemical performance under harsh conditions, including high rate of 5 C (96.0% capacity retention after 1000 cycles), extreme temperatures from -20 °C to 80 °C, and in conjunction with 30-µm lithium metal anode. This work advances the development of high-performance gel polymer electrolytes through innovative nanostructure and molecule design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202501229 | DOI Listing |
Luminescence
September 2025
Department of Physics, Saveetha Engineering College (Autonomous), Chennai, Tamilnadu, India.
The iron nickel magnesium tetra-oxide (FeNiMgO) nanocomposites (NCs) first reported in this article were synthesized using the sol-gel method. For investigation using powder X-ray diffraction (PXRD), the presence of a cubic structure is confirmed. In Raman spectroscopy, the vibrational modes are investigated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.
Radiation-induced skin injury (RSI) remains a significant clinical challenge due to persistent oxidative stress, chronic inflammation, and impaired tissue regeneration. It is demonstrated that RSI is accompanied by dysregulation of the immune microenvironment, wherein macrophages act as key regulators of all pathological cascades. Here, we developed a dual network hydrogel (Gel/SA@MXene) through dual cross-linking via UV irradiation and calcium ions to accelerate radiation-combined wound healing.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, Guangdong, China.
Introduction: During the healing process, the functional gradient attachment of the rotator cuff (RC) tendon-bone interface fails to regenerate, which severely impedes load transfer and stress dissipation, thereby increasing the risk of retears. As a result, the treatment of rotator cuff tears remains a significant clinical challenge.
Methods: In this study, a dual-crosslinked hyaluronic acid/polyethylene glycol (HA/PEG) hydrogel scaffold was synthesized using hyaluronic acid and polyethylene glycol as base materials.
ACS Omega
September 2025
State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu 221116, People's Republic of China.
This study focuses on the issues of poor fluidity, low penetration into residual coal, and suboptimal inhibition of coal spontaneous combustion associated with traditional coal mine gel fire retardants. The permeability and flow characteristics of a sodium alginate-based composite thermosensitive hydrogel, as well as its fire prevention and extinguishment performance, were investigated. The findings suggest that the thermosensitive hydrogel behaves as a pseudoplastic fluid at 40 °C and a yield-pseudoplastic fluid at 65 °C, exhibiting shear-thinning behavior with increasing shear rate.
View Article and Find Full Text PDFFood Chem X
August 2025
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin 300308, China.
In this study, tannic acid (TA) was applied to remodel the structure of quercetin-loaded oat globulin fibrils (UF-Que), to form novel fibril-based composite hydrogels (UF-Que-TA) to encapsulate Que. The hydrogels were prepared by varying the [TA]/[UF] ratio to investigate the impact of TA on gelation behavior, microstructure, molecular interactions, and stability of Que. Physicochemical results indicated that the incorporation of TA significantly enhanced the gel strength and promoted non-covalent interactions including hydrogen bonding, hydrophobic interactions, and ionic interactions.
View Article and Find Full Text PDF