98%
921
2 minutes
20
Electrocatalytic coreduction of nitrate and CO provides an opportunity for the synthesis of organonitrogen chemicals. The major challenge is to realize the simultaneous reduction of nitrate and CO into active intermediates for C-N bond formation. In this work, methylamine is synthesized from nitrate and CO on a polyphthalocyanine electrocatalyst with heterometal centers (CoCuPPc). Notably, it is found that the Co and Cu centers coordinated with the conjugated macrocyclic network of polyphthalocyanine can catalyze CO reduction to formaldehyde and nitrate reduction to hydroxylamine, respectively. The nucleophilic attack of hydroxylamine on formaldehyde generates a formaldoxime intermediate, which is then further reduced to methylamine. The overreduction reactions of hydroxylamine and formaldehyde intermediates are suppressed by CoCuPPc. This bifunctional catalyst with heteronuclear active centers simultaneously catalyzes nitrate and CO reduction to key intermediates for C-N bond formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12395663 | PMC |
http://dx.doi.org/10.1039/d5sc04641f | DOI Listing |
Ecotoxicol Environ Saf
September 2025
Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China. Electronic address:
Soil antibiotic pollution is a global concern. It has been confirmed that straw or earthworm can enhance microbial degradation of antibiotics in soil. However, in the C/N transformation processes of soil ecosystems, straw and earthworms are closely interconnected.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China. Electronic address:
Nickel-based catalysts have recently become promising candidates for urea electrolysis. However, their application is hindered by strong interaction with *COO intermediates. Herein, oxyphilic WO is introduced into Ni to construct dual active sites for regulating reaction intermediate adsorption.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China.
Axial ligand engineering is a promising strategy to enhance the performance of single-atom catalysts (SACs) in electrocatalysis. However, a single non-metallic axial coordination atom linked to monolayer SACs (MSACs) often exhibits insufficient stability. In this work, we designed a series of bilayer SACs (BSACs) with vertically stacked FeN and MN (M = Sc-Zn) layers bridged by axial non-metallic atoms (C, N, O, P, S, and Se).
View Article and Find Full Text PDFChem Sci
August 2025
Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
Using an Earth-abundant transition metal to mediate formation and splitting of C-C σ-bonds, in response to electrical stimuli, constitutes a promising strategy to construct complex organic skeletons. Here, we showcase how [ BuN][N] reacts with an isocyanide adduct of a tetrahedral and high-spin Ti complex, [(Tp )TiCl] (1), to enact N-atom transfer, C-N bond formation, and C-C coupling, to form a dinuclear complex, [(Tp )Ti{AdN(N)C-C(N)NAd}Ti(Tp )] (3), with two Ti ions bridged by a disubstituted oxalimidamide ligand ( Bu = -butyl, Tp = hydrotris(3--butyl-5-methylpyrazol-1-yl)borate, Ad = 1-adamantyl). Magnetic and computational studies reveal two magnetically isolated d Ti ions, and electrochemical studies unravel a reversible two-electron oxidation at -0.
View Article and Find Full Text PDFJ Org Chem
September 2025
New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, China 430068.
A copper-catalyzed denitrogenative radical cyclization of 3-aminoindazoles with -cyanoarylacrylamides has been developed, enabling the efficient synthesis of a variety of cyanoarylated quinoline-2,4(1,3)-diones in moderate to good yields at room temperature. Notably, this strategy overcomes the traditional challenge of the low reactivity of nitrile groups toward radical addition by utilizing cyanoaryl radicals generated from 3-aminoindazoles as reactive intermediates. Mechanism studies indicate that 2-cyanophenyl radicals, generated through the cleavage of two C-N bonds of 3-aminoindazoles, served as the key intermediates initiating the cyclization process.
View Article and Find Full Text PDF