Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Shape memory hydrogels (SMHs) have emerged as transformative materials in tissue engineering, owing to their unique ability to recover their original shape after deformation. These hydrogels combine hydrophilicity and elasticity with shape memory capabilities, making them ideal candidates for various biomedical applications. This review examines their innovative design and synthesis, highlighting the physical and biological characteristics that make them well-suited for tissue engineering, such as mechanical properties, biocompatibility, and biodegradability. SMHs have diverse applications in tissue engineering, including bone regeneration, soft tissue reconstruction, and the engineering of vascular and neural tissues. Additionally, they are utilized in smart drug delivery systems and the fabrication of 3D-printed customized implants. Despite these advancements, challenges such as production scalability, optimization of mechanical properties, shape recovery and fixation, controlled degradation, and long-term stability persist. Interdisciplinary approaches are crucial for overcoming these challenges and enhancing their clinical potential. In conclusion, SMHs offer innovative solutions to complex biomedical problems, making them valuable tools for advancing regenerative medicine and improving patient outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396266PMC
http://dx.doi.org/10.1016/j.bioactmat.2025.08.009DOI Listing

Publication Analysis

Top Keywords

tissue engineering
16
shape memory
12
memory hydrogels
8
mechanical properties
8
shape
5
tissue
5
engineering
5
hydrogels tissue
4
engineering advances
4
advances challenges
4

Similar Publications

Rational assembly of 3D network materials and electronics through tensile buckling.

Sci Adv

September 2025

Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China.

Bioinspired network designs are widely exploited in biointegrated electronics and tissue engineering because of their high stretchability, imperfection insensitivity, high permeability, and biomimetic J-shaped stress-strain responses. However, the fabrication of three-dimensionally (3D) architected electronic devices with ordered constructions of network microstructures remains challenging. Here, we introduce the tensile buckling of stacked multilayer precursors as a unique route to 3D network materials with regularly distributed 3D microstructures.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) enable direct communication between the brain and computers. However, their long-term functionality remains limited due to signal degradation caused by acute insertion trauma, chronic foreign body reaction (FBR), and biofouling at the device-tissue interface. To address these challenges, we introduce a multifunctional surface modification strategy called targeting-specific interaction and blocking nonspecific adhesion (TAB) coating for flexible fiber, achieving a synergistic integration of mechanical compliance and biochemical stability.

View Article and Find Full Text PDF

Genomic characterization of normal and aberrant human milk production.

Sci Adv

September 2025

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.

Breastfeeding is essential for reducing infant morbidity and mortality, yet exclusive breastfeeding rates remain low, often because of insufficient milk production. The molecular causes of low milk production are not well understood. Fresh milk samples from 30 lactating individuals, classified by milk production levels across postpartum stages, were analyzed using genomic and microbiome techniques.

View Article and Find Full Text PDF

Skin scars remain a substantial clinical challenge because of their impact on appearance and psychological well-being. Lysyl oxidases catalyze collagen cross-linking, a key factor in scar development. Here, we report a randomized, double-blind, placebo-controlled phase 1 study to assess the safety and tolerability of PXS-6302, a topical pan-lysyl oxidase inhibitor, in treating mature scars (ACTRN12621001545853).

View Article and Find Full Text PDF

Botanical Nanovesicles Boost Mesenchymal Stem Cell Therapy: Next-Gen Advanced Therapy Medicinal Products for Spinal Cord Injury.

Tissue Eng Part B Rev

September 2025

Department of Pharmaceutics School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.

The poor prognosis constitutes a significant difficulty for spinal cord injury (SCI) individuals. Although mesenchymal stem cells (MSCs) hold promises as advanced therapy medicinal products (ATMPs) for SCI patients, challenges such as Good Manufacturing Practice-compliant manufacturing, cellular senescence, and limited therapeutic efficacy continue to hinder their clinical translation. Recent advances have identified botanical nanovesicles (BNs) as potent bioactive mediators capable of "priming" MSCs to self-rejuvenate, augment paracrine effect, and establish inflammatory tolerance.

View Article and Find Full Text PDF