Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Numerous metabolic enzymes translocate from the ER membrane bilayer to the lipid droplet (LD) monolayer, where they perform essential functions. Mislocalization of certain LD-targeted membrane proteins, including HSD17B13 and PNPLA3, is implicated in metabolic dysfunction-associated steatotic liver disease (MASLD). However, the mechanisms governing the trafficking and accumulation of ER proteins on LDs remain poorly understood. Here, using MINFLUX and HILO single-molecule tracking combined with machine learning, we show that HSD17B13, GPAT4, and the model cargo diffuse at comparable speeds in the ER and on LDs, but become nano-confined upon reaching the LD surface. Mechanistic dissection of targeting revealed that this confinement, along with protein accumulation on LDs, depends on specific residues within its targeting motif. These residues mediate preferential and repeated interactions with nanoscale membrane domains, suggesting that LD-targeted proteins selectively partition into distinct lipid-protein environments that transiently retain and concentrate them at the LD surface. Single-molecule trajectories further revealed bidirectional trafficking of across seipin-containing ER-LD bridges, providing direct evidence for lateral protein transfer across membrane contact sites. These findings establish nanodomain-based confinement as a key mechanism driving selective protein accumulation on LDs and reveal how membrane bridges between organelles facilitate protein sorting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12393287PMC
http://dx.doi.org/10.1101/2024.08.27.610018DOI Listing

Publication Analysis

Top Keywords

protein accumulation
8
accumulation lds
8
membrane
5
organelle bridges
4
bridges nanodomain
4
nanodomain partitioning
4
partitioning govern
4
govern targeting
4
targeting membrane-embedded
4
proteins
4

Similar Publications

In the presence of chromatin bridges in cytokinesis, human cells retain actin-rich structures (actin patches) at the base of the intercellular canal to prevent chromosome breakage. Here, we show that daughter nuclei connected by chromatin bridges are under mechanical tension that requires interaction of the nuclear membrane Sun1/2-Nesprin-2 Linker of Nucleoskeleton and Cytoskeleton (LINC) complex with the actin cytoskeleton, and an intact nuclear lamina. This nuclear tension promotes accumulation of Sun1/2-Nesprin-2 proteins at the base of chromatin bridges and local enrichment of the RhoA-activator PDZ RhoGEF through PDZ-binding to cytoplasmic Nesprin-2 spectrin repeats.

View Article and Find Full Text PDF

Semaphorin 3A-mediated perineuronal nets formation incubates depressive-like behaviors in male mice via activating parvalbumin-expressing interneurons.

Mol Psychiatry

September 2025

Department of Pharmacology, School of Basic Medicine and Department of Pharmacy, Tongji Hospital, Tongji Medical College; and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. chenjg@hu

Dysfunction of parvalbumin-expressing interneurons (PV-INs) in the cerebral cortex has been implicated in major depressive disorder. Perineuronal nets (PNNs), which encapsulate PV-INs, are considered to influence the structural and functional properties of PV-INs. Semaphorin 3A (Sema3A) is a secreted protein constituent of PNNs, but the specific roles of Sema3A in modulating PV-INs during stress remain unknown.

View Article and Find Full Text PDF

An ongoing goal of top-down mass spectrometry is to increase the performance for larger proteins. Using higher energy activation methods, like 193 nm ultraviolet photodissociation (UVPD), offers the potential to cause more extensive fragmentation of large proteins and thereby yield greater sequence coverage. Obtaining high sequence coverage requires confident identification and assignment of fragment ions, and this process is hampered by spectral congestion and low signal-to-noise ratio (S/N) of the fragment ions.

View Article and Find Full Text PDF

The PR10 (Pathogenesis-Related Protein 10) family plays a crucial role in plant defense and growth regulation, with unique hydrophobic cavities that bind various ligands, including phytohormones and alkaloids. Among them, Norcoclaurine Synthases (NCS) are key enzymes in benzylisoquinoline alkaloid (BIAs) biosynthesis, catalyzing the Pictet-Spengler reaction to form the precursor (S)-norcoclaurine. However, the evolutionary origins and functions of the PR10 family in BIA biosynthesis remain unclear.

View Article and Find Full Text PDF

The immune system uses a variety of DNA sensors, including endo-lysosomal Toll-like receptors 9 (TLR9) and cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These sensors activate immune responses by inducing the production of a variety of cytokines, including type I interferons (IFN). Activation of cGAS requires DNA-cGAS interaction.

View Article and Find Full Text PDF