98%
921
2 minutes
20
Ring-opening metathesis polymerization (ROMP) of norbornene derivatives enables access to polymeric materials for applications ranging from targeted drug delivery to high-performance thermosets; however, the carbon-carbon backbones of ROMP-derived poly-(norbornenes) resist deconstruction under mild, selective conditions. Cleavable comonomers (CCs) have been introduced to address this limitation, yet their implementation has been hindered by prohibitive costs and/or suboptimal reactivity. Moreover, the discovery of existing CCs has been largely empirical, lacking clear design principles. Here, we identify the entropy of ring-opening as one of the key determinants of ROMP copolymerization behavior of the best-performing CCs reported to date. Guided by this insight, we establish predictive design criteria and introduce , a CC that exhibits near-ideal room temperature copolymerization with a broad range of norbornene-based (macro)-monomers. is significantly less expensive than leading silyl ether-based CCs and enables uniform incorporation of cleavable linkages into polymer backbones at low loadings. Beyond delivering a cost-effective and high-performance CC, this work provides fundamental insights into ROMP copolymerization that will enable predictive CC development and expand the functional scope of deconstructable polymeric materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12395298 | PMC |
http://dx.doi.org/10.1021/acscentsci.5c00521 | DOI Listing |
Braz Oral Res
September 2025
Universidade Positivo, School of Health Sciences, Graduate Program in Dentistry, Curitiba, PR, Brazil.
This study assessed the effect of saliva exposure on roughness (Ra) and Vickers hardness (VHN) of two direct restorative materials, enamel, and dentin adjacent to the restorations. Enamel and dentin cavities in molars (n = 10) were restored with a) bulk-fill resin composite (Tetric N-Flow Bulk Fill, BF) with the application of a universal adhesive (Tetric N-Bond Universal) and b) alkasite restorative material (Cention N, CN) with and without the application of a universal adhesive. After 24 h (baseline), surface roughness and hardness of the restorative material and dental tissues were assessed at 100 μm from the tooth/restoration interface.
View Article and Find Full Text PDFBraz Oral Res
September 2025
Pontifícia Universidade Católica de Minas Gerais - PUC-Minas, Institute of Biological and Health Sciences, Dentistry Department, Belo Horizonte, MG, Brasil.
The contamination of dental curing light tips was evaluated before and after treatment and after their use and disinfection. The influence of a plastic protective barrier over the flexural strength and the modulus of elasticity of resin composites were also analyzed. Microbiological sampling was conducted at initial contamination (T0), in Log 10 CFU/4 mL; after dental treatment (T1); and after disinfection with 70% ethanol (v/v) (T2).
View Article and Find Full Text PDFBraz Oral Res
September 2025
Universidade de São Paulo - USP, Bauru School of Dentistry, Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru, SP, Brazil.
This in vitro study evaluated the effect of proanthocyanidin, palm oil, and vitamin E against initial erosion. Bovine enamel blocks (n = 140) were divided into 14 groups: C+_SnCl2/NaF/Am-F-containing solution (positive control); C-_deionized water (negative control); O_palm oil; P6.5_6.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
Microfibers are pollutants of increasing concern, as they accumulate in aquatic environments and pose risks to living organisms. Once released, they undergo degradation processes that reduce their size and enhance their ability to interact with biological systems. Among these processes, photodegradation is a key driver, leading to fiber fragmentation and structural shrinkage.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
September 2025
Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Turkey.
Biodegradable biosensors represent a transformative advancement in sustainable sensing technology, offering an environmentally friendly and biocompatible alternative to traditional sensors. This review examines recent advancements, material innovations, degradation mechanisms, and application areas of biodegradable biosensors within the biomedical and environmental sectors. Natural and synthetic biodegradable polymers, such as chitosan, silk fibroin, alginate, PLA, PLGA, and PVA, are assessed for their functional contributions to sensing platforms.
View Article and Find Full Text PDF