Enhancing cell density and recombinant protein production through the control of acetate accumulation.

3 Biotech

Research and Development, Biological E Limited, Plot No.1,Phase II, SP Biotech Park, Genome Valley, Shameerpet, Hyderabad, 500078 India.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

is widely used in biopharmaceutical production due to its ability to grow aerobically and produce proteins intracellularly. However, the limitation of the fermentation process is acetate accumulation, a by-product of overflow metabolism during high-glucose aerobic growth, which negatively impacts cell growth and protein expression. Traditional strategies to mitigate this include genetic modifications or low-density fermentation, which have significant limitations. In the present study, a novel fed-batch fermentation strategy was developed to reduce acetate accumulation and enhance the production of recombinant pneumococcal surface adhesin A (PsaA). A design of experiments (DOE) was conducted to optimize the culture media and develop a real-time, feedback-controlled feeding strategy that prevents acetate accumulation without requiring genetic alterations. Initial runs with 20 g/L glucose resulted in acetate accumulation of 7-8 g/L and limited biomass growth. By lowering glucose concentration to 10 g/L and inducing a carbon-limited phase via controlled feeding, cells switched from acetate production to consumption through the reverse Pta-AckA pathway. This shift led to an over 80% reduction in acetate levels. Optimized conditions consistently yielded higher cell densities. OD₆₀₀ values of 100-120 were achieved. The desired yield of the protein pneumococcal surface adhesin A (PsaA) was 3.0 g/L, representing a 2.0-fold increase over unoptimized runs. SDS-PAGE and quantitative analyses confirmed consistent robust protein expression. The strategy was validated across multiple batches, proving reproducible, scalable, and regulatory friendly. This approach offers a cost-effective and efficient alternative to genetic modification for controlling overflow metabolism and enhancing recombinant protein yields in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390910PMC
http://dx.doi.org/10.1007/s13205-025-04490-4DOI Listing

Publication Analysis

Top Keywords

acetate accumulation
20
recombinant protein
8
overflow metabolism
8
protein expression
8
pneumococcal surface
8
surface adhesin
8
adhesin psaa
8
acetate
7
protein
5
accumulation
5

Similar Publications

Purpose: To evaluate the impact of MRP inhibition by MK571 on prostate hypercontractility in diet-induced obesity, based on the hypothesis that this intervention enhances intracellular cAMP and cGMP signaling.

Methods: Adult C57BL/6 mice were divided into three groups: (i) lean, (ii) obese, and (iii) obese + MK571 (5 mg/kg/day, 14 days). The prostate was isolated for immunohistochemistry, biochemistry and functional assays.

View Article and Find Full Text PDF

In vitro infant fecal fermentation characteristics of bovine milk osteopontin and 2'-fucosyllactose combination.

Food Res Int

November 2025

School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China; Sino-Singapore International Research Institute, Guangzhou 510555, China. Electronic address: zh

Breast milk is rich in bioactive proteins and oligosaccharides, including osteopontin (OPN) and 2'-fucosyllactose (2'-FL), which are believed to promote the growth of beneficial microbiota and regulate intestinal barrier function. In this study, fermentation substrates including DOPN (digested OPN fragment), 2'-FL and their combinations in varying proportions, were prepared through in vitro gastrointestinal digestion, dialysis and freeze-drying. Changes in gas production, organic acid levels, ammonia N concentration and bacterial population abundance were studied using an in vitro batch fermentation model, with feces inocula from healthy infants.

View Article and Find Full Text PDF

A novel extracellular mannan from Bacillus velezensis ameliorates metabolic-associated fatty liver disease by modulating gut microbiota in mice model.

Carbohydr Polym

November 2025

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:

Metabolic associated fatty liver disease (MAFLD) is a globally recognized chronic metabolic disorder characterized by lipid metabolism abnormalities. Accumulating evidence indicates that exopolysaccharides (EPS) could modulate the gut microbiota structure and function to prevent and treat MAFLD. Herein, a novel EPS designated BVP1 was isolated from Bacillus velezensis CGMCC 24752.

View Article and Find Full Text PDF

The accumulation of endogenous advanced glycation end products (AGEs) has been shown to degrade the integrity of the extracellular matrix in the dermis, resulting in signs of aging. Resurfacing procedures are a first-line treatment option. Post-procedure skin care is integral in achieving optimal results with minimal downtime.

View Article and Find Full Text PDF

Background: Prothioconazole (PTC), a triazole fungicide, and its metabolite prothioconazole-desthio (dPTC) present potential phytotoxic risks in crops. However, the mechanisms governing their uptake and detoxification in wheat remain unknown. This study aimed to determine how macronutrients and endogenous signaling compounds regulate PTC absorption and metabolism in wheat seedlings.

View Article and Find Full Text PDF