Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microglia play a critical role in neuroinflammation, a key secondary injury mechanism following traumatic brain injury (TBI). The colony-stimulating factor 1 receptor (CSF-1R) inhibitor PLX5622 has shown promise in suppressing neuroinflammation by depleting microglia, but it lacks specificity in targeting microglia at the injury site. To overcome this limitation, we developed PLX5622 nanoparticles functionalized with the CAQK peptide for lesion-specific targeting and combined them with a hydrogel (GelMA-PPS) that possesses potent reactive oxygen species (ROS) scavenging capabilities. This nanoparticle-hydrogel drug delivery system (GelMA-PPS/P) significantly enhanced the delivery efficiency and therapeutic efficacy of PLX5622 in TBI treatment. Localized administration of this system effectively depleted microglia at the injury site, suppressed neuroinflammation, and reduced the release of inflammatory cytokines. Its ROS scavenging ability was also validated in vitro and in vivo. Together, these effects synergistically improved neurological function recovery in TBI mouse models. This innovative strategy offers a comprehensive and targeted approach to managing neuroinflammation after TBI, providing a promising avenue for advancing TBI therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400644PMC
http://dx.doi.org/10.1186/s12951-025-03682-7DOI Listing

Publication Analysis

Top Keywords

targeting microglia
8
traumatic brain
8
brain injury
8
microglia injury
8
injury site
8
ros scavenging
8
microglia
5
neuroinflammation
5
injury
5
tbi
5

Similar Publications

Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.

View Article and Find Full Text PDF

Background: Ischemic stroke can damage the cerebral white matter, resulting in myelin loss and neurological deficits. Moreover, microglial activation plays an important role in ischemic stroke; therefore, inhibiting microglial activation has become an effective therapeutic target for ischemic stroke.

Objective: This study aimed to investigate the effects of electroacupuncture (EA) on microglial activation and polarization, and the role of oligodendrocyte genesis in myelin reformation after ischemic stroke.

View Article and Find Full Text PDF

Background: Ischemic stroke (IS) is a common neurological disease with a significant financial burden but lacks effective drugs. This study sought to explore the mechanisms underlying MAP kinase-interacting serine/threonine-protein kinase 2 (MKNK2), a gene enriched in the hypoxia-inducible factor-1 (HIF-1) signaling, in IS-related neurological injury.

Methods: Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) models were used in vivo and in vitro.

View Article and Find Full Text PDF

PFGA12 ameliorates Hypoxic-Ischemic brain injury by directly regulating PRDX1 and inhibiting ferroptosis.

Biochem Pharmacol

September 2025

Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China. El

Hypoxic-ischemic brain damage (HIBD) is a severe condition leading to extensive neuronal loss and functional impairments, representing a significant challenge in neonatal care. PFGA12, a peptide derived from fibrinogen alpha chain (FGA), which is notably downregulated in the umbilical cord blood of hypoxic-ischemic encephalopathy (HIE) infants. We demonstrate that PFGA12 significantly enhances cell viability and mitigates oxygen-glucose deprivation/reperfusion (OGD/R)-induced neuronal cell death.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic neurological disorder characterized by demyelination of the central nervous system (CNS), leading to a broad spectrum of physical and cognitive impairments. Myeloid cells within the CNS, including microglia and border-associated macrophages, play a central role in the neuroinflammatory processes associated with MS. Activation of these cells contributes to the local inflammatory response and promotes the recruitment of additional immune cells into the CNS.

View Article and Find Full Text PDF