Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Effective nerve conduits development remains a significant challenge in regenerative medicine, with the potential to greatly improve patients' quality of life in case of peripheral nerve injury. To date, several tubular devices have been introduced into clinical practice; however, the outcomes remain suboptimal. As empty conduits, lacking internal guidance structures or bioactive elements, they provide minimal support for nerve regeneration and fail especially in cases of long-gap nerve injuries. In this scenario, intense research efforts are directed toward improving conduit-associated results . Among the most promising strategies, the addition of luminal fillers has shown great potential in creating favorable microenvironment for axonal growth and tissue remodeling. Considering the many luminal fillers explored and reported in the literature, Self-Assembling Peptides (SAPs) have achieved significant attention by the scientific community due to their unique ability to arrange into biocompatible, extracellular matrix-like hydrogels that can favorably support axons and Schwann cells regeneration and organization within the conduit, guiding growth toward the distal stump. This review focuses on the use of SAP-based hydrogels as luminal fillers for sciatic nerve repair, summarizing the most relevant findings and highlighting their potential to enhance nerve regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380886PMC
http://dx.doi.org/10.3389/fcell.2025.1637189DOI Listing

Publication Analysis

Top Keywords

nerve regeneration
12
luminal fillers
12
self-assembling peptides
8
sciatic nerve
8
nerve
7
peptides sciatic
4
regeneration
4
regeneration review
4
review conduit
4
conduit microenvironment
4

Similar Publications

Background: Spinal cord injury (SCI) often leads to severe motor and sensory impairments, and current treatment methods have not achieved complete neural repair. In recent years, exosomes have become a research focus in the treatment of nerve injuries due to their important roles in intercellular information transfer, immune regulation, and neural repair. Our study conducts a scientometric analysis to map the research landscape related to exosomes in SCI.

View Article and Find Full Text PDF

Facial nerve pathology: emerging strategies for regeneration and functional restoration.

J Mater Chem B

September 2025

Nebraska Translational Research Center (NTRC), Department of Growth and Development, College of Dentistry, University of Nebraska Medical Center, Joseph D. & Millie E. Williams Science Hall, 525 S 42nd St, Room No 3.0.010, Omaha, NE 68105-6040, USA.

Facial nerve injuries cause significant functional impairments, affect facial expressions, speech, and overall quality of life. This article explores advances in facial nerve regeneration, encompassing both conventional and emerging therapeutic strategies. The regenerative process involves Wallerian degeneration, axonal regrowth, and target muscle reinnervation, where the distal axon degrades and the proximal axon initiates sprouting to restore connectivity.

View Article and Find Full Text PDF

Neurological disorders are complex conditions characterized by impairment of the nervous system, affecting motor, cognitive, and sensory functions. Current treatments meet substantial obstacles, primarily due to the difficulty of transporting drugs across the blood-brain barrier and ineffective therapy for nerve regeneration. Emerging technologies, such as electrospinning, offer innovative solutions to overcome these challenges.

View Article and Find Full Text PDF

Extensive peripheral nerve injuries often lead to the loss of neurological function due to slow regeneration and limited recovery over large gaps. Current clinical interventions, such as nerve guidance conduits (NGCs), face challenges in creating biomimetic microenvironments that effectively support nerve repair. The developed GrooveNeuroTube is composed of hyaluronic acid methacrylate and gelatin methacrylate hydrogel, incorporating active agents (growth factors and antibacterial agents) encapsulated within an NGC conduit made of 3D-printed PCL grid fibers.

View Article and Find Full Text PDF

Background: Chronic constriction injury (CCI) of the sciatic nerve induces neuropathic pain, inflammation, oxidative stress, and neurodegenerative changes, impairing sensory and emotional function. While curcumin is well recognized for its anti-inflammatory and neuroprotective properties, its therapeutic use is limited by poor bioavailability. Curcumin liposomal nanoparticles (CLNs) offer improved delivery and stability.

View Article and Find Full Text PDF