A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Trends and Advancements in Smart Electrospun Food Fibers for the Management of Neurological Disorders. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neurological disorders are complex conditions characterized by impairment of the nervous system, affecting motor, cognitive, and sensory functions. Current treatments meet substantial obstacles, primarily due to the difficulty of transporting drugs across the blood-brain barrier and ineffective therapy for nerve regeneration. Emerging technologies, such as electrospinning, offer innovative solutions to overcome these challenges. The study explores the potential of electrospun food fibers in managing and treating neurological disorders, concentrating on their role in drug delivery and nerve tissue regeneration. Electrospinning allows for the generation of nanofibers from diverse natural and synthetic polymers that imitate the extracellular matrix and stimulate brain healing. These fibers may be loaded with therapeutic drugs, permitting controlled, localized drug release while limiting systemic toxicity. For instance, electrospun fibers loaded with neuroprotective drugs, such as donepezil and levodopa, have exhibited better drug stability, enhanced bioavailability, and prolonged therapeutic efficacy in treating syndromes such as Alzheimer's and Parkinson's diseases. Furthermore, the biodegradable and biocompatible nature of food-based polymers like chitosan, cellulose, and zein makes them great candidates for medicinal applications, minimizing the risk of inflammation and unfavorable immunological reactions. In conclusion, electrospun food fibers show tremendous promise in resolving the issues of drug delivery and nerve regeneration in neurological illnesses. Their capacity to boost therapeutic results via targeted and regulated drug release makes them a possible alternative to established treatment procedures, bringing renewed hope to patients suffering from neurodegenerative disorders.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0118715273375873250829060106DOI Listing

Publication Analysis

Top Keywords

electrospun food
12
food fibers
12
neurological disorders
12
nerve regeneration
8
drug delivery
8
delivery nerve
8
fibers loaded
8
drug release
8
fibers
5
drug
5

Similar Publications