Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spatiotemporal resolution is a cornerstone of bioelectronics, enabling precise observation and control of biological events at the molecular, cellular and tissue levels. In this Review, we analyse recent advancements in spatiotemporal resolution essential for applications such as neuroprosthetics, cardiac monitoring and biosensing, with a focus on devices utilizing electrical, electrochemical and optoelectronic signal transduction. We define the intrinsic and extrinsic parameters of spatial and temporal resolution and highlight high-performance materials and device architectures - including electrodes, transistors and optoelectronic interfaces - that drive these capabilities. Strategies such as device miniaturization, 3D fabrication and multifunctional integration are evaluated for their capacity to improve resolution, particularly within the complex microenvironments of biological tissues. However, challenges persist, including signal interference, device stability and the demand for reliable long-term operation. Overcoming these obstacles requires continuous innovation in materials science, device engineering and computational approaches. Enhanced spatiotemporal resolution holds promise for advancing diagnostic precision, therapeutic responsiveness and our understanding of dynamic biological systems across biomedical disciplines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12382458PMC
http://dx.doi.org/10.1038/s41578-025-00798-yDOI Listing

Publication Analysis

Top Keywords

spatiotemporal resolution
16
materials device
8
resolution
6
device strategies
4
strategies enhance
4
spatiotemporal
4
enhance spatiotemporal
4
resolution bioelectronics
4
bioelectronics spatiotemporal
4
resolution cornerstone
4

Similar Publications

Temporal transcriptomics reveal crucial networks underlying jasmonate-mediated diurnal floret opening and closure in rice.

Sci China Life Sci

September 2025

State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.

Diurnal floret opening and closure (DFOC) is essential for rice reproductive development and hybrid breeding, yet transcriptional dynamics and underlying regulatory networks remain poorly characterized. Here, we conducted high-temporal-resolution transcriptomic analyses of lodicules to dissect DFOC regulatory networks in two japonica rice cultivars. Analysis of differentially expressed genes (DEGs) uncovered core genes shared by both cultivars, primarily associated with jasmonic acid (JA) signaling and cell wall remodeling.

View Article and Find Full Text PDF

Fast-hyperspectral imaging remote sensing: Emission quantification of NO and SO from marine vessels.

Light Sci Appl

September 2025

Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China.

Marine vessels play a vital role in the global economy; however, their negative impact on the marine atmospheric environment is a growing concern. Quantifying marine vessel emissions is an essential prerequisite for controlling these emissions and improving the marine atmospheric environment. Optical imaging remote sensing is a vital technique for quantifying marine vessel emissions.

View Article and Find Full Text PDF

Understanding the intricate relationship between land use/land cover (LULC) transformations and land surface temperature (LST) is critical for sustainable urban planning. This study investigates the spatiotemporal dynamics of LULC and LST across Delhi, India, using thermal data from Landsat 7 (2001), Landsat 5 (2011) and Landsat 8 (2021) resampled to 30-m spatial resolution, during the peak summer month of May. The study aims to target three significant aspects: (i) to analyse and present LULC-LST dynamics across Delhi, (ii) to evaluate the implications of LST effects at the district level and (iii) to predict seasonal LST trends in 2041 for North Delhi district using the seasonal auto-regressive integrated moving average (SARIMA) time series model.

View Article and Find Full Text PDF

Accurate attribution of the areas and populations impacted by climate-related events often relies on linear distance-based methods, where the study unit is assigned temperature data to the closest weather station. We developed a novel method and data pipeline that provides a grid-based measure of exposure to extreme heat and cold events called Grid EXposure (, enabling linkage to individual-level human health data at different spatial scales. GridEX automates the gathering of station-based climatological data and provides estimates of apparent temperature, offering a more comprehensive representation of human thermal comfort and perceived temperature.

View Article and Find Full Text PDF

Digital reconstruction of full embryos during early mouse organogenesis.

Cell

August 2025

Department of Cardiac Surgery, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, School of Life Science and

Early organogenesis is a crucial stage in embryonic development, characterized by extensive cell fate specification to initiate organ formation but also by a high susceptibility to developmental defects. Here, we profiled 285 serial sections from six E7.5-E8.

View Article and Find Full Text PDF