98%
921
2 minutes
20
Electrically conductive hydrogels are of interest as scaffolds for tissue engineering applications involving the growth, implantation, or attachment of electrically active cells. Such hydrogels should exhibit soft mechanics, tunable conductivity to match native tissue, biocompatibility, and biodegradability into non-toxic, clearable species. Common conductors based on metals or polymers can be challenged by insufficient biocompatibility or biodegradability. A potential new alternative is the use of composites containing 1T-phase MoS nanosheet fillers, which have a metallic nature and undergo oxidative biodegradation over clinically useful time scales. Chemically exfoliated MoS is introduced into assembly protocols for fibrin hydrogels and the composites characterized by electrochemical impedance spectroscopy, which reveals a 400% increase in conductivity in the physiologically important mid-band region of 10-10 hertz. studies on fibrin/MoS composite hydrogels show complex multipath biodegradation behaviors. Matrix metalloprotease action degrades fibrin to soluble protein, without attacking the nanosheets. The nanosheets degrade separately by HO oxidation to soluble molybdate in a self-limiting reaction inhibited by the catalysis of peroxide decomposition by the molybdate product. Genipin cross-linking is demonstrated as a method to stabilize the fibrin network, control the overall hydrogel monolith lifetime, and control the biodegradation pathway to avoid nanosheet release by early loss of the fibrin network. The composite degradation products were found to be non-cytotoxic to primary cardiac fibroblasts by the MTT assay. Overall, 1T-phase MoS nanosheets offer an attractive alternative to currently available inorganic or polymeric additives for creating conductive, bioresorbable, and biocompatible hydrogels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12379805 | PMC |
http://dx.doi.org/10.1039/d5na00377f | DOI Listing |
Int J Biol Macromol
September 2025
College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China. Electronic address:
Conductive hydrogels have emerged as promising materials for flexible wearable electronics; however, their facile fabrication remains challenging. This study presents an antifreeze, antibacterial, and conductive hydrogel constructed from biomacromolecules sodium carboxymethylcellulose (CMCNa) and polyvinyl alcohol (PVA). The hydrogel was synthesized via a simple one-pot method in an ethylene glycol/water (EG/H₂O) binary solvent system, incorporating lithium chloride (LiCl) and clove essential oil (CEO), followed by a single freeze-thaw cycle.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, China.
Conductive hydrogels have revolutionized wearable electronics due to their biocompatibility and tunable properties. However, it remains a great challenge for hydrogel-based sensors to maintain both conductivity and mechanical integrity in harsh environments. Synergistic dynamic interactions provide a promising strategy to address this issue.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
College of Life Sciences, China Jiliang University, Hangzhou, 310018, China. Electronic address:
Glucose sensors are critical analytical devices designed for precise and continuous monitoring of glucose concentrations, playing a pivotal role in healthcare, particularly in diabetes management. Here, we synthesis glucose oxidase (GOx)/Se hydrogel to detect the glucose, thereby generating measurable electrical signals. Further, the transfection of electronic signals rely on the poly(dopamine) (PDA) grid in hydrogel.
View Article and Find Full Text PDFChem Rev
September 2025
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea.
Self-regulating hydrogels represent the next generation in the development of soft materials with active, adaptive, autonomous, and intelligent behavior inspired by sophisticated biological systems. Nature provides exemplary demonstrations of such self-regulating behaviors, including muscle tissue's precise biochemical and mechanical feedback mechanisms, and coordinated cellular chemotaxis driven by dynamic biochemical signaling. Building upon these natural examples, self-regulating hydrogels are capable of spontaneously modulating their structural and functional states through integrated negative feedback loops.
View Article and Find Full Text PDFChemistry
September 2025
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China.
This study introduces the HydroTherm-Flow Smart Window (HTF Window), the first groundbreaking integration of thermochromic windows and Fe-Cr redox flow batteries (Fe-Cr RFBs), achieving dual functionalities of dynamic solar modulation-via dual-band (visible + near-infrared, NIR) modulation-and high-efficiency energy storage in a single component. Leveraging tunable hydroxypropyl cellulose (HPC) hydrogels, it enables ultrafast optical switching and autonomous nighttime opacity, overcoming the slow response and privacy limitations of conventional thermochromic systems. By repurposing the window as a compact electrolyte reservoir, it reduces the RFB spatial footprint while enhancing ionic conductivity by 30% via hydrogel "ion highways," achieving 77% energy efficiency with a 40% reduction in the solar heat gain coefficient.
View Article and Find Full Text PDF