Self-regulating hydrogels represent the next generation in the development of soft materials with active, adaptive, autonomous, and intelligent behavior inspired by sophisticated biological systems. Nature provides exemplary demonstrations of such self-regulating behaviors, including muscle tissue's precise biochemical and mechanical feedback mechanisms, and coordinated cellular chemotaxis driven by dynamic biochemical signaling. Building upon these natural examples, self-regulating hydrogels are capable of spontaneously modulating their structural and functional states through integrated negative feedback loops.
View Article and Find Full Text PDFAdvancements in optoelectronic biointerfaces have revolutionized healthcare by enabling targeted stimulation and monitoring of cells, tissues, and organs. Photostimulation, a key application, offers precise control over biological processes, surpassing traditional modulation methods with increased spatial resolution and reduced invasiveness. This perspective highlights three approaches in non-genetic optoelectronic photostimulation: nanostructured phototransducers for cellular stimulation, micropatterned photoelectrode arrays for tissue stimulation, and thin-film flexible photoelectrodes for multiscale stimulation.
View Article and Find Full Text PDFElectroceuticals are bioelectronic devices that provide or modulate electrical or electrochemical signals to regulate physiological functions. In particular, devices designed for energy conversion are capable of transforming electrical energy into alternative forms of energy, such as heat or light, or vice versa, thereby enabling the photoelectrochemical and electrochemical modulation of biological systems, for example, to control muscle movement or cardiac rhythm. Such energy conversion approaches offer remote control and enhanced precision, surpassing the limitations of direct tissue and cell stimulation with traditional electroceutical devices, such as pacemakers, including mechanical mismatch at interfaces and wired communication.
View Article and Find Full Text PDFNatural plants provide a wealth of valuable materials for healthcare, with much of their potential often overlooked in what is commonly considered waste. This study focuses on the (), whose fruit, (PDH), has long been used in traditional Chinese medicine. By investigating PDH husk's swelling behavior, we efficiently extracted its polysaccharides without harsh chemicals.
View Article and Find Full Text PDFDespite the increasing demand for high-energy-density lithium batteries, the development of high-mass-loading electrodes remains challenged by structural instability and poor charge transfer. Herein, an ionically conductive elastic polymer (ICEP) binder, designed to enable the fabrication of ultrahigh mass-loading Ni-rich layered cathodes (LiNiCoMnO, NCM811), is introduced. The ICEP binder integrates mechanical elasticity, strong adhesion, and ionic conductivity through diverse functional groups, addressing challenges in high-mass-loading electrode fabrication.
View Article and Find Full Text PDFThe natural excitability in mammalian tissues has been extensively exploited for drug-free electroceutical therapies. However, it is unclear whether bacterial residents on the human body are equally excitable and if their excitability can also be leveraged for drug-free bioelectronic treatment. Using a microelectronic platform, we examined the electrical excitability of , a skin-residing bacterium responsible for widespread clinical infections.
View Article and Find Full Text PDFQuasi-solid-state batteries (QSSBs) are attracting considerable interest as a promising approach to enhance battery safety and electrochemical performance. However, QSSBs utilizing high-capacity active materials with substantial volume fluctuations, such as Si microparticle (SiMP) anodes and Ni-rich cathodes (NCM811), suffer from unstable interfaces due to contact loss during cycling. Herein, an in situ interlocking electrode-electrolyte (IEE) system is introduced, leveraging covalent crosslinking between acrylate-functionalized interlocking binders on active materials and crosslinkers within the quasi-solid-state electrolyte (QSSE) to establish a robust, interconnected network that maintains stable electrode-electrolyte contact.
View Article and Find Full Text PDFNat Nanotechnol
June 2025
Nano-enabled catalysis at the interface of metals and semiconductors has found numerous applications, but its role in mediating cellular responses is still largely unexplored. Here we explore the territory by examining the once elusive mechanism through which a nanoporous silicon-based photocatalyst facilitates the two-electron oxidation of water to generate hydrogen peroxide under physiological conditions. We achieve precise modulation of intracellular stress granule formation by the controlled photoelectrochemical production of hydrogen peroxide in the extracellular environment, thereby enhancing cellular resilience to significant oxidative stress.
View Article and Find Full Text PDFNano-bioelectronics, which blend the precision of nanotechnology with the complexity of biological systems, are evolving with innovations such as silicon nanowires, carbon nanotubes, and graphene. These elements serve applications from biochemical sensing to brain-machine interfacing. This review examines nano-bioelectronics' role in advancing biomedical interventions and discusses their potential in environmental monitoring, agricultural productivity, energy efficiency, and creative fields.
View Article and Find Full Text PDFChemically synthesized PEDOT (poly(3,4-ethylenedioxythiophene)) nanomaterials, with various nanostructured morphologies as well as different intrinsic electrical conductivities and crystallinities, were compared as electrocatalysts for Co(III) reduction in dye-sensitized solar cells (DSSCs). Electrochemical parameters, charge transfer resistance toward the electrode/electrolyte interface, catalytic activity for Co(III)-reduction, and diffusion of cobalt redox species greatly depend on the morphology, crystallinity, and intrinsic electrical conductivity of the chemically synthesized PEDOTs and optimization of the fabrication procedure for counter electrodes. The PEDOT counter electrode, fabricated by spin coating a DMSO-dispersed PEDOT solution with an ordered 1D structure and nanosized fibers averaging 70 nm in diameter and an electrical conductivity of ∼16 S cm, exhibits the lowest charge transfer resistance, highest diffusion for a cobalt redox mediator and superior electrocatalytic performance compared to a traditional Pt-counter electrode.
View Article and Find Full Text PDFSeamless interfaces between electronic devices and biological tissues stand to revolutionize disease diagnosis and treatment. However, biological and biomechanical disparities between synthetic materials and living tissues present challenges at bioelectrical signal transduction interfaces. We introduce the active biointegrated living electronics (ABLE) platform, encompassing capabilities across the biogenic, biomechanical, and bioelectrical properties simultaneously.
View Article and Find Full Text PDFIn the dynamic biological system, cells and tissues adapt to diverse environmental conditions and form memories, an essential aspect of training for survival and evolution. An understanding of the biological training principles will inform the design of biomimetic materials whose properties evolve with the environment and offer routes to programmable soft materials, neuromorphic computing, living materials, and biohybrid robotics. In this perspective, we examine the mechanisms by which cells are trained by environmental cues.
View Article and Find Full Text PDF