98%
921
2 minutes
20
The assessment of how environmental mixture exposures affect reproductive health faces difficulties. While knowledge graph networks offer valuable advantages in biological interpretation and prediction, their application in epidemiological studies, particularly in a small sample size setting, remains scarce. We recruited 116 women undergoing in vitro fertilization and embryo transfer (IVF-ET) treatment in Beijing and Yantai City, China. Among them, 55 women were diagnosed with early pregnancy loss (EPL), while 61 achieved clinical pregnancy. Clinical records, and paired hair, serum, and follicular samples were collected, with 16 per- and polyfluoroalkyl substances (PFAS) and 41 metal(loid)s measured. We developed a framework coupled with biological knowledge graph-based networks (BKGNs) and machine learning (ML) to predict EPL. Our BKGNs integrate chemical-specific biological pathways, i.e., Gene Ontology (GO) and protein, with individual-level mixture exposure data. The GO-integrated model, with an area under the curve (AUC) of 0.876, outperformed others (AUC = 0.819), even when the sample size decreased to 60% of the total. Additionally, this framework deciphered critical exposures (e.g., serum selenium and chromium) and biological perturbations (e.g., cell population proliferation and apoptotic nuclear changes), linking mixture exposure to EPL. Our proposed novel framework is both robust and cost-effective, offering a mechanistic lens for predicting exposure-associated health outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.5c05389 | DOI Listing |
Glob Chang Biol
September 2025
Chair of Silviculture, Faculty of Environment and Natural Resources, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.
Mixed-species forests are proposed to enhance tree resistance and resilience to drought. However, growing evidence shows that tree species richness does not consistently improve tree growth responses to drought. The underlying mechanisms remain uncertain, especially under unprecedented multiyear droughts.
View Article and Find Full Text PDFEnviron Epidemiol
October 2025
Department of Psychiatry and Behavioral Health, The Ohio State University, Ohio.
Background: Prospective studies suggest that prenatal exposure to chemical neurotoxicants and maternal stress increase risk for psychiatric problems. However, most studies have focused on childhood outcomes, leaving adolescence-a critical period for the emergence or worsening of psychiatric symptoms-relatively understudied. The complexity of prenatal coexposures and adolescent psychiatric comorbidities, particularly among structurally marginalized populations with high exposure burdens, remains poorly understood.
View Article and Find Full Text PDFSci Total Environ
September 2025
MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Electronic address:
The widespread application of chemical additives in textiles raises concerns about dermal exposure, especially in children. We analyzed 28 per- and polyfluoroalkyl substances (PFAS) and 9 organophosphate esters (OPEs) in household textiles and children's garments. PFAS were detected in 87.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China.
Incomplete biomass burning emits complex mixture of gaseous and particulate organic pollutants, yet their chemical speciation and toxicity have not been fully identified. This study profiled the organic fingerprinting primarily emitted from typical incomplete biomass burning through nontargeted analysis and estimated their toxic potencies. Gaseous organics exhibited 2.
View Article and Find Full Text PDFACS Synth Biol
September 2025
Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States.
Microbes can be programmed to record participation in gene transfer by coding biological-recording devices into mobile DNA. Upon DNA uptake, these devices transcribe a catalytic RNA (cat-RNA) that binds to conserved sequences within ribosomal RNAs (rRNAs) and perform a trans-splicing reaction that adds a barcode to the rRNAs. Existing cat-RNA designs were generated to be broad-host range, providing no control over the organisms that were barcoded.
View Article and Find Full Text PDF