Mitochondrial Biogenesis in Skeletal Muscle.

Adv Exp Med Biol

Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mitochondrial biogenesis refers to the synthesis of nuclear- and mitochondrially encoded proteins, along with phospholipids, that aid in the expansion of the mitochondrial network. In skeletal muscle, mitochondria are organized as a reticulum, as this ideal morphology complements the elongated shape of a myofibre. This allows for efficient substrate diffusion and supports the vigorously dynamic metabolic capabilities of this tissue type. Mitochondria are central responders to deviations in metabolic homeostasis and are thus required to support acute or chronic bouts of endurance exercise, cold exposure, starvation, or other externally imposed stimuli. This chapter marks the introduction to skeletal muscle mitochondrial adaptability as we discuss the subcellular events that contribute to mitochondrial biogenesis. Topics range from mitochondrial content and subpopulations in different muscle fibre types to signaling cascades and regulatory elements that support this mechanism. The characterization of mitochondrial biogenesis was made possible through clever models of both exercise and muscle disuse, at times with genetic modifications to important regulators, and is incorporated in this discussion. The chapter concludes with reviews on changes to signaling towards biogenesis with age. Altogether, our review attempts to highlight the vast revelations on the targeting, contribution, and significance of mitochondrial biogenesis in skeletal muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-031-88361-3_2DOI Listing

Publication Analysis

Top Keywords

mitochondrial biogenesis
20
skeletal muscle
16
mitochondrial
8
biogenesis skeletal
8
muscle mitochondrial
8
muscle
6
biogenesis
5
skeletal
4
biogenesis refers
4
refers synthesis
4

Similar Publications

Migrasomes in Health and Disease: Insights into Mechanisms, Pathogenesis, and Therapeutic Opportunities.

Cell Physiol Biochem

September 2025

Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland, E-Mail:

Migrasomes are newly discovered, migration-dependent organelles that mediate the release of cellular contents into the extracellular environment through a process known as migracytosis. Since their identification in 2014, growing evidence has highlighted their critical roles in intercellular communication, organ development, mitochondrial quality control, and disease pathogenesis. Migrasome biogenesis is a complex, multi-step process tightly regulated by lipid composition, tetraspanin-enriched microdomains, and molecular pathways involving sphingomyelin synthase 2, Rab35, and integrins.

View Article and Find Full Text PDF

Downregulation of Nrf2 deteriorates cognitive impairment in APP/PS1 mice by inhibiting mitochondrial biogenesis through the PPARγ/PGC1α signaling pathway.

Behav Brain Res

September 2025

Department of neurology, Hebei Medical University Third Hospital, Hebei 050000,Shijiazhuang,China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei 050000,Shijiazhuang,China. Electronic address:

Background: Mitochondrial dysfunction is considered to be an important pathogenesis of cognitive impairment in Alzheimer's disease(AD). Activation of Nrf2 can improve cognitive impairment in AD mice, but the underlying mechanism remains to be elucidated. This research aims to investigate the intrinsic molecular mechanism of Nrf2 in mitochondrial biogenesis related to cognitive impairment of AD mice.

View Article and Find Full Text PDF

Reduced mitochondrial quality and quantity in tumors is associated with dedifferentiation and increased malignancy. However, it remains unclear how to restore mitochondrial quantity and quality in tumors and whether mitochondrial restoration can drive tumor differentiation. Our study shows that restoring mitochondrial function using retinoic acid (RA) to boost mitochondrial biogenesis and a mitochondrial uncoupler to enhance respiration synergistically drives neuroblastoma differentiation and inhibits proliferation.

View Article and Find Full Text PDF

Cardiac complications are among the most common and severe extrapulmonary manifestations of influenza virus infection, yet they are rarely recapitulated in mouse models without immunodeficiency. We found that influenza virus A/California/04/2009 (H1N1) carrying a mouse-adaptive amino acid substitution in the PB2 protein (E158A) disseminates to the heart in WT C57BL/6 mice, where it induces inflammation, electrical dysfunction, and fibrotic remodeling. Influenza virus-infected heart tissue was significantly altered in mitochondrial metabolism, extracellular matrix, circadian rhythm, and immunity pathways.

View Article and Find Full Text PDF

Autophagy Modulation by Antidepressants: Mechanisms and Implications.

Neurochem Res

September 2025

Department of Psychiatry, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.

Depression is a significant global health concern that extends beyond mere neurotransmitter imbalances, as the significance of autophagy in cellular recycling is increasingly recognized as pivotal in its pathogenesis and therapeutic intervention. This review thoroughly integrates the insights on how various antidepressants, such as SSRIs, SNRIs, and TCAs, confer therapeutic efficacy through modulation of autophagy pathways. We present evidence indicating that these pharmacological agents can augment autophagic flux, facilitate the clearance of neurotoxic protein aggregates, mitigate neuroinflammation, and enhance mitochondrial functionality, all of which represent critical elements of depressive pathology.

View Article and Find Full Text PDF