Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cardiac complications are among the most common and severe extrapulmonary manifestations of influenza virus infection, yet they are rarely recapitulated in mouse models without immunodeficiency. We found that influenza virus A/California/04/2009 (H1N1) carrying a mouse-adaptive amino acid substitution in the PB2 protein (E158A) disseminates to the heart in WT C57BL/6 mice, where it induces inflammation, electrical dysfunction, and fibrotic remodeling. Influenza virus-infected heart tissue was significantly altered in mitochondrial metabolism, extracellular matrix, circadian rhythm, and immunity pathways. Particularly striking was activation of gene expression downstream of the mitochondrial biogenesis-promoting AMPK/PGC-1α axis, which occurred late in infection but failed to reverse the repression of mitochondria-associated genes, suggesting an insufficient or delayed compensatory response. Accordingly, we administered AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) early in infection and observed restoration of mitochondria-associated gene levels, amelioration of cardiac electrical dysfunction and fibrosis, and improvement in survival without overt effects on lung function. Overall, the advent of an immunocompetent model for severe influenza-associated cardiac dysfunction revealed activation of AMPK signaling as a host-targeted metabolic intervention for mitigating virus-induced heart pathologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407972PMC
http://dx.doi.org/10.1101/2025.08.28.672931DOI Listing

Publication Analysis

Top Keywords

influenza virus
12
virus infection
8
electrical dysfunction
8
cardioprotective effects
4
effects ampk
4
ampk activation
4
activation h1n1
4
influenza
4
h1n1 influenza
4
infection
4

Similar Publications

Mapping the infectious burden in VEXAS syndrome: a systematic review and rationale for prevention.

Lancet Rheumatol

September 2025

Service de Médecine interne et polyvalente, Centre Hospitalier du Haut-Anjou, Château-Gontier, France; Université d'Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, F-49000 Angers, France. Electronic address:

Infections are increasingly recognised as a major cause of morbidity and mortality in patients with vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome. We conducted a systematic review to characterise the infectious burden of VEXAS syndrome and propose preventive strategies. We included 57 studies (813 patients) showing that infections in patients with VEXAS syndrome were frequent, severe in 40-60% of cases, and fatal in 6-15% of cases.

View Article and Find Full Text PDF

Interferon-γ receptor signaling is critical for balanced immune activation and protection against influenza after vaccination.

Virology

September 2025

Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA. Electronic address:

To better understand the contribution of interferon-γ (IFN-γ) receptor signaling to vaccine-induced immunity, we employed A129 (IFN-α/β receptor-deficient) and AG129 (IFN-α/β/γ receptor-deficient) mouse models. AG129 mice induced comparable levels of virus-specific IgG after vaccination with influenza virus H5 hemagglutinin (HA) virus-like particles (VLPs). Vaccinated AG129 mice with HA VLPs exhibited impaired Th1-immune responses, lower hemagglutination inhibition (HAI) titers, increased susceptibility to virus infection, and lower survival rates following influenza virus (H5N1) challenge than vaccinated A129 mice.

View Article and Find Full Text PDF

Repurposing disulfiram: An innovative inhibitory approach against a broad spectrum of viruses.

Biochem Biophys Res Commun

September 2025

Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandon

Disulfiram (DSF), an FDA-approved therapeutic agent for alcohol dependence, has recently attracted considerable interest due to its broad-spectrum inhibitory effects against various viruses. Increasing evidence suggests that DSF can inhibit viral replication through two major mechanisms: the inhibition of viral protein catalytic activity and the ejection of Zn from viral proteins. This review comprehensively summarized the molecular mechanisms underlying DSF's antiviral activity against viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), hepatitis C virus (HCV), influenza virus, human immunodeficiency virus (HIV), and Kaposi sarcoma-associated herpes virus (KSHV), with a particular focus on its dual targeting of Cys residues and Zn coordination sites.

View Article and Find Full Text PDF

BACKGROUND The SENTINEL influenza surveillance system has been used in Poland since 2004, incorporating both epidemiological and virological monitoring of influenza viruses. SENTINEL works in cooperation with general practitioners, 16 Voivodship Sanitary Epidemiological Stations (VSES), and the National Influenza Centre (NIC). NON-SENTINEL samples are collected from places that do not participate in the SENTINEL program.

View Article and Find Full Text PDF

Article I. metformin affects H1N1-induced apoptosis in lung epithelial cells by the miR-130a-5p-regulated PI3K/AKT signaling pathway.

Biochem Biophys Res Commun

August 2025

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China. Electronic address:

Background: H1N1 influenza virus can cause diffuse alveolar damage, such as pneumonia and pulmonary fibrosis, when it infects the respiratory tract. Metformin not only improves chronic inflammation but also has direct anti-inflammatory effects. Therefore, the focus of this study was on the molecular mechanism and regulatory mechanism of metformin against influenza virus in alleviating lung disease.

View Article and Find Full Text PDF