98%
921
2 minutes
20
Microfluidic impedance flow cytometry has functioned as an enabling instrument in single-cell analysis, which, however, suffers from the limiting tradeoff between high sensitivity and clogging-free operation. In order to address this issue, this study presented a microfluidic impedance flow cytometer based on three-dimensional (3D) hydrodynamic focusing, in which the crossflow of conductive sample fluids and insulating sheath fluids was leveraged to centralize and restrict electric field lines to the sample fluid, thereby achieving high impedance sensitivity of single cells without the concern of channel blockage. Different from conventional impedance flow cytometry, in this study, impedance amplitude dips (rather than pulse singles) generated by single microparticles traveling through the 3D hydrodynamic focusing region were experimentally validated using microbeads. Based on the home-developed microfluidic impedance flow cytometer, high-sensitivity and clogging-free impedance profiles of three leukemia cell lines (K562, Jurkat, and HL-60) and four types of purified leukocytes (neutrophil, eosinophil, monocyte, and lymphocyte) were quantified as -8.01 ± 2.96%, -4.53 ± 1.09%, -6.36 ± 1.54%; -8.11 ± 0.84%, -7.23 ± 1.06%, -9.05 ± 2.00% and -5.68 ± 1.24%, respectively. When a recurrent neural network was adopted for cell-type classification, high classification accuracies of 93.9% for three leukemia cell lines and 87.8% for four types of purified leukocytes were achieved. This study presented a promising impedance flow cytometer that combines high sensitivity with sustainable working capabilities, potentially overcoming the limitations of conventional microfluidic impedance flow cytometry and significantly advancing its commercial development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5lc00571j | DOI Listing |
J Am Soc Echocardiogr
September 2025
Department of Cardiology, University Hospital of Ghent, Ghent University, Ghent, Belgium.
Background: The shape of the continuous wave Doppler (CWD) envelope in functional tricuspid valve regurgitation (fTR) results from the dynamic interplay between flow, pressure gradient and impedance. Although the v-wave cut-off shape in fTR is a well-recognized feature of severe TR, the complete spectrum of TR CWD shapes across the different fTR severity ranges has not been thoroughly explored, which is the scope of the present study.
Methods: In 245 patients with fTR, TR was graded with transthoracic echocardiography using the corrected proximal isovelocity surface area method and CWD shapes were scored, both qualitatively (using visual scoring into parabolic, triangular or v-wave cut-off categories) and quantitatively using a novel Vmax/Vmean parameter and time-to-peak velocity corrected for TR duration (TTP/TRD).
Small
September 2025
Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta, T6G 1H9, Canada.
Rapid strides in portable electronics and telecommunication technologies have sharply escalated the demand for high-performance electromagnetic interference (EMI) shielding materials that effectively suppress secondary electromagnetic pollution while simultaneously integrating thermal management. Here an innovative, lightweight, hierarchical triple-layer aerogel structure comprising nickel (Ni) foam (NiF), titanium carbonitride (TiCNT) MXene, and poly(vinyl alcohol) (PVA), fabricated via a facile, one-step bidirectional freeze-casting process is presented. This asymmetric aerogel architecture strategically employs an impedance-matching MXene/PVA top layer for optimized microwave entry, a NiF/MXene/PVA interlayer introducing magnetic loss and enhancing heat conduction, and a reflective, thermally foamed MXene bottom layer promoting internal reflection for superior energy absorption.
View Article and Find Full Text PDFTalanta
August 2025
Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand. Electronic address:
A rapid and automated determination of nicotinamide adenine dinucleotide phosphate (NADPH) is proposed and applied to the evaluation of glucose-6-phosphate dehydrogenase (G6PD) deficiency in real samples. To this end, a sequential injection analyzer with electrochemical detection (SIA-ECD) is proposed with 0.1 mol L Tris-HCl (pH 8.
View Article and Find Full Text PDFFront Microbiol
August 2025
Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, United States.
Total and viable microbial cell counts are increasingly important for applications including live biotherapeutic products, food safety, and probiotics. In microbiology, cells are quantified using methods such as colony forming unit (CFU), flow cytometry, and polymerase chain reaction (PCR), but different methods measure different aspects of the cells (measurands), and results may not be directly comparable across methods. In the absence of a ground-truth reference material for cell count, one cannot quantify the accuracy of any cell counting method, which limits method performance assessments and comparisons.
View Article and Find Full Text PDFChemSusChem
September 2025
Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
Engineering the local chemical environment is an emerging strategy to enhance the performance of electrochemical CO reduction reactions (CORR). Bismuth-zirconium composite catalysts (Bi-Zr-KB, where KB = Ketjen Black) are developed to leverage Zr incorporation to modulate the local CO microenvironment in an alkaline flow-cell system. Among the catalysts synthesized with various Bi/Zr ratios, the Bi-Zr-KB sample with a Bi/Zr ratio of 2 demonstrated the highest performance, achieving a current density of -176 mA cm and a formate Faradaic efficiency of 88% at -0.
View Article and Find Full Text PDF