Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Amyloid β (Aβ)-dependent circuit dysfunction in Alzheimer's disease (AD) is determined by a puzzling mix of hyperactive and inactive ("silent") brain neurons. Recent studies identified excessive glutamate accumulation as a key Aβ-dependent determinant of hyperactivity. The cellular mechanisms underlying neuronal silence depend on both Aβ and tau protein pathologies, with an unknown role of Aβ. Here, by using single-cell-initiated rabies virus (RV) tracing in mouse models of β-amyloidosis, we demonstrate that the presynaptic connectivity of silent, but not that of hyperactive, neurons is severely disrupted. Furthermore, silent neurons display a major spine loss and strongly suppressed synaptic activity. Thus, we suggest that synaptic decoupling is an Aβ-dependent cellular mechanism underlying progressive neuronal silencing and a critical factor for the cognitive impairments encountered in AD.

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2515113122DOI Listing

Publication Analysis

Top Keywords

neuronal silencing
8
synaptic decoupling
8
amyloid β-dependent
4
β-dependent neuronal
4
silencing synaptic
4
decoupling amyloid
4
amyloid aβ-dependent
4
aβ-dependent circuit
4
circuit dysfunction
4
dysfunction alzheimer's
4

Similar Publications

Blood-Brain Barrier (BBB) dysfunction acts as a key mediator of ischemic brain injury, contributing to brain edema, inflammatory cell infiltration, and neuronal damage. The integrity of the BBB is largely maintained by tight junction proteins, such as Claudin-5, and its disruption exacerbates neurological deficits. Neurokinin B (NKB), a neuropeptide that belongs to the tachykinin family, has been implicated in various physiological processes, including neuroinflammation and vascular function.

View Article and Find Full Text PDF

The role of REST in regulating the BDNF/TrkB signalling pathway in nano-alumina induced cognitive dysfunction in zebrafish.

Ecotoxicol Environ Saf

September 2025

Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China. Electronic address:

Synaptic plasticity is fundamental for cognitive development and brain function. Aluminium nanoparticles (AlNPs), widely used in industrial and consumer products, pose potential neurotoxic risks, particularly during early neurodevelopment. However, their effects on synaptic plasticity and cognitive outcomes remain poorly understood.

View Article and Find Full Text PDF

Diverse epigenetic regulatory mechanisms ensure and regulate cellular diversity. Among others, the histone 3 lysine 9 me3 (H3K9me3) post translational modification participates in silencing lineage-inappropriate genes. H3K9me3 restricts access of transcription factors and other regulatory proteins to cell-fate controlled genes.

View Article and Find Full Text PDF

The hippocampus (HC), a central hub for memory and cognition, exhibits unique metabolic resilience during aging despite widespread brain glucose hypometabolism. Here, we report that aged humans and macaques paradoxically display elevated HC glucose uptake (18F-FDG PET SUVR) alongside strengthened connectivity to sensory-motor and limbic networks-an adaptive rewiring revealed by graph-theoretical metabolic network analysis. Integrated multi-omics profiling identified STT3A (oligosaccharyltransferase) and ALG5 (dolichyl-phosphate β-glucosyltransferase) as key regulators of age-related HC adaptation, with their upregulation in aged macaque hippocampi driving N-glycosylation-dependent metabolic reprogramming.

View Article and Find Full Text PDF