Advancing AI-driven biomarker discovery in diabetic nephropathy: A framework for robustness and interpretability.

Diabetes Obes Metab

Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, UAE.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.1111/dom.70087DOI Listing

Publication Analysis

Top Keywords

advancing ai-driven
4
ai-driven biomarker
4
biomarker discovery
4
discovery diabetic
4
diabetic nephropathy
4
nephropathy framework
4
framework robustness
4
robustness interpretability
4
advancing
1
biomarker
1

Similar Publications

Background: Falls are a major cause of injury and death among the elderly, highlighting the need for effective and real-time detection systems. Embedded Internet of Health Things (IoHT) technologies integrating sensors, microcontrollers, and communication modules offer continuous monitoring and rapid response. However, the research landscape remains fragmented, and no comprehensive bibliometric review has been conducted.

View Article and Find Full Text PDF

Flexible photonic contactless human-machine interface based on visible-blind near-infrared organic photodetectors.

Natl Sci Rev

September 2025

The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.

Contactless human-machine interfaces (C-HMIs) are revolutionizing artificial intelligence (AI)-driven domains, yet face application limitations due to narrow sensing ranges, environmental fragility, and structural rigidity. To address these obstacles, we developed a flexible photonic C-HMI (Flex-PCI) using flexible visible-blind near-infrared organic photodetectors. In addition to its unprecedented performance across key metrics, including broad detection range (0.

View Article and Find Full Text PDF

The role of AI for improved management of breast cancer: Enhanced diagnosis and health disparity mitigation.

Comput Methods Programs Biomed

September 2025

Electrical and Computer Engineering Department, School of Engineering, Morgan State University, Baltimore, MD, 21251, USA. Electronic address:

Breast Cancer (BC) remains a leading cause of morbidity and mortality among women globally, accounting for 30% of all new cancer cases (with approximately 44,000 women dying), according to recent American Cancer Society reports. Therefore, accurate BC screening, diagnosis, and classification are crucial for timely interventions and improved patient outcomes. The main goal of this paper is to provide a comprehensive review of the latest advancements in BC detection, focusing on diagnostic BC imaging, Artificial Intelligence (AI) driven analysis, and health disparity considerations.

View Article and Find Full Text PDF

Background: Artificial intelligence (AI) algorithms offer an effective solution to alleviate the burden of diabetic retinopathy (DR) screening in public health settings. However, there are challenges in translating diagnostic performance and its application when deployed in real-world conditions.

Objective: This study aimed to assess the technical feasibility of integration and diagnostic performance of validated DR screening (DRS) AI algorithms in real-world outpatient public health settings.

View Article and Find Full Text PDF

Single-cell surface-enhanced Raman scattering (SERS) has emerged as a powerful tool for precision medicine owing to its label-free detection, ultrasensitivity, and unique molecular fingerprinting. Unlike conventional bulk analysis, it enables detailed characterization of cellular heterogeneity, with particular promise in circulating tumor cell (CTC) identification, tumor microenvironment (TME) metabolic profiling, subcellular imaging, and drug sensitivity assessment. Coupled with microfluidic droplet systems, SERS supports high-throughput single-cell analysis and multiparametric screening, while integration with complementary modalities such as fluorescence microscopy and mass spectrometry enhances temporal and spatial resolution for monitoring live cells.

View Article and Find Full Text PDF