Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Grapevine ( L.) cultivation is an important agricultural sector worldwide. Its expansion into new areas, like Kazakhstan, brings significant phytosanitary risks. Viroids, such as grapevine yellow speckle viroid 1 (GYSVd-1) and hop stunt viroid (HSVd), are RNA pathogens that threaten vineyard productivity. They can cause a progressive decline through latent infections. Traditional diagnostic methods are usually targeted and therefore not suitable for thorough surveillance. In contrast, modern high-throughput sequencing (HTS) methods often face challenges due to their high costs and complicated sample preparation, such as ribosomal RNA (rRNA) depletion. This study introduces a simplified diagnostic workflow that overcomes these barriers. We utilized the latest Oxford Nanopore V14 cDNA chemistry, which is designed to prevent internal priming, by substituting a targeted oligo(dT)VN priming strategy to facilitate the sequencing of non-polyadenylated viroids from total RNA extracts, completely bypassing the rRNA depletion step and use of random oligonucleotides for c DNA synthesis. This method effectively detects and identifies both GYSVd-1 and HSVd. This workflow significantly reduces the time, cost, and complexity of HTS-based diagnostics. It provides a powerful and scalable tool for establishing strong genomic surveillance and phytosanitary certification programs, which are essential for supporting the growing viticulture industry in Kazakhstan.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12388932PMC
http://dx.doi.org/10.3390/pathogens14080782DOI Listing

Publication Analysis

Top Keywords

rrna depletion
12
bypassing rrna
8
nanopore workflow
4
workflow grapevine
4
grapevine viroid
4
viroid surveillance
4
surveillance kazakhstan
4
kazakhstan bypassing
4
depletion non-canonical
4
non-canonical priming
4

Similar Publications

Postmenopausal osteoporosis increases periodontal inflammation and the pathogenicity of the oral microbiota in a rat model.

J Oral Microbiol

September 2025

Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China.

Objectives: This study aims to explore the mechanisms of the detrimental effects of postmenopausal osteoporosis (PMO) on periodontitis.

Methods: An ovariectomized (OVX) rat model was established to investigate the effects of PMO on alveolar bone homeostasis and periodontal inflammation. Chlorhexidine digluconate (CHX) was administered to rats with OVX - periodontitis to ascertain the involvement of the oral microbiota in the influence of PMO on periodontitis.

View Article and Find Full Text PDF

Unmanaged plastic waste in Sub-Saharan Africa pollutes large areas and degrades into microplastics. Surfaces of microplastic are colonized by bacteria and fungi, resulting in the plastisphere. Plastispheres from high population hotspots on the African continent enrich pathogenic fungi, posing a potential threat to human health.

View Article and Find Full Text PDF

Background: While Pseudomonas aeruginosa (PA) colonization is linked to poor outcomes in bronchiectasis, emerging evidence suggests that microbial community collapse-marked by diversity loss and depletion of commensal taxa-may better reflect disease progression than pathogen load alone. This study investigates whether airway microbiota dysbiosis driven by PA colonization induces ecological fragility and evaluates the predictive utility of integrating microbial diversity indices with systemic inflammation markers to forecast 1-year acute exacerbation risk using interpretable machine learning.

Methods: Bronchoalveolar lavage fluid (BALF) samples from 23 patients (8 PA-colonized, 15 non-colonized) underwent 16 S rRNA gene sequencing.

View Article and Find Full Text PDF

Introduction: The gut microbiota plays a critical role in regulating brain structure and function via the microbiota-gut-brain axis. Antibiotic-induced gut dysbiosis (AIGD) has been linked to neuroanatomical changes and cognitive deficits. However, its impact on neuronal morphology in layer II of the medial entorhinal cortex (mECII), a region central to spatial memory, remains poorly understood.

View Article and Find Full Text PDF

Mycoplasmal pneumonia of sheep (MPS), caused by , profoundly impacts ovine productivity and survival. Although gut-lung microbiota interactions are increasingly recognized in respiratory diseases, whether similar crosstalk occurs between the lung and rumen microbiota in MPS-affected sheep remains unknown. To investigate alterations in the lung and rumen microbiota of sheep with MPS, the crosstalk between these microbial communities, and their impacts on growth phenotypes.

View Article and Find Full Text PDF