98%
921
2 minutes
20
This study introduces a cost-effective solution and sensor arrays for the multipoint liquid-level measuring sensor based on an intensity modulation technique. The sensor structure is based on the twisting of two fibers and creates cascading to achieve a multipoint detection. Three sensors are fabricated on a single illuminated polymer optical fiber. The twisting creates side-coupling between two fibers, and the coupled power is attenuated when liquid emerges in the coupled region. Each sensor has its own output source, which is connected to the power meter. When the liquid-level increases, the coupled power is continuously decreased. The multipoint liquid-level sensor is theoretical and experimentally tested. The experimental results show that sensors have a good response and linearity. The sensors are able to measure the liquid-level up to 12 cm and have a sensitivity of about 0.2726 μW/cm, 0.1715 μW/cm, and 0.1281 μW/cm, respectively. The different flow rate (50 mL/min-300 mL/min) is also analyzed to validate the dynamic response of the sensor. The sensor demonstrates a high sensitivity and resolution in the liquid-level detection. Meanwhile, the liquid-level variation is individually and simultaneously measured. The system does not require any decoupling technique as the system relies on a single LED source, and the coupled power is individually measured from each power meter. The system represents a significant advancement in precise liquid-level sensing technology, as the system has advantages of a flexible, durable, cost-effective, and active response with respect to changes in the liquid-level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12389773 | PMC |
http://dx.doi.org/10.3390/s25165009 | DOI Listing |
J Colloid Interface Sci
September 2025
State Key Laboratory of Hydro Science and Engineering, and Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China. Electronic address:
Hypothesis: On highly cleaned planar surfaces submerged in highly cleaned water, flat surface nanobubbles with an angle of attachment of ∼15 are observed - never on engineering surfaces submerged in plain water, though here unidentified cavitation nuclei are always present and cause low tensile strength.
Experiments: In the present study, surface nanobubbles are generated by standard experimental techniques on a polished steel surface, and we find that the shape and the angles of attachment of the bubbles are influenced by the local substrate topography. These observations align with the theory of non-adsorbed liquid zones, which explains a surface nanobubble as a bubble with a skin of contamination molecules, which bond along the bubble rim at a contact angle of ∼14.
J Am Chem Soc
September 2025
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
Developing cost-effective spinel oxide catalysts with both high oxygen evolution reaction (OER) activity and stability is crucial for advancing sustainable clean energy conversion. However, practical applications are often hindered by the activity limitations inherent in the adsorbate evolution mechanism (AEM) and the stability limitations associated with the lattice oxygen mechanism (LOM). Herein, we demonstrate structural changes induced by phase transformation in CoMn spinel oxides, which yield more active octahedral sites with shortened intersite distance.
View Article and Find Full Text PDFAdv Mater
September 2025
Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, Bellaterra, Catalonia, 08193, Spain.
The unparalleled loss-less electrical current conduction of high-temperature superconducting (HTS) materials encourages research on YBaCuO (YBCO) to unravel opportunities toward numerous applications. Nonetheless, production costs and throughput of the commercialized HTS Coated Conductors (CCs) are still limiting a worldwide spread. Transient liquid assisted growth (TLAG) is a non-equilibrium process displaying ultrafast growth rate which, when combined with chemical solution deposition (CSD), is emerging as a strong candidate to reduce the cost/performance ratio of YBCO superconductors.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Materials Science and Engineering, Anhui University, Hefei, 230601, China.
Modulating the electronic structure of catalysts to maximize their power holds the key to address the challenges faced by zinc-iodine batteries (ZIBs), including the shuttle effect and slow redox kinetics at the iodine cathode. Herein, oxygen vacancies is innovatively introduced into CoO lattice to create high-spin-state Co active sites in nonstoichiometric CoO nanocrystals supported by carbon nanofibers (H-CoO/CNFs). This simple strategy intensifies crystal field splitting of Co 3d orbitals, optimizing the spin-orbital coupling between Co 3d orbitals and iodine species.
View Article and Find Full Text PDFJ Chem Inf Model
September 2025
College of Agriculture and Biological Science, Dali University, Dali 671000, China.
The E76K mutation in protein tyrosine phosphatase (PTP) SHP2 is a recurrent driver of developmental disorders and cancers, yet the mechanism by which this single-site substitution promotes persistent activation remains elusive. Here, we combine path-based conformational sampling, unbiased molecular dynamics (MD) simulations, Markov state models (MSMs), and neural relational inference (NRI) to elucidate how E76K reshapes the activation landscape and regulatory architecture of SHP2. Using a minimum-action trajectory derived from experimentally determined closed and open structures, we generated representative transition intermediates to guide the unbiased MD simulations.
View Article and Find Full Text PDF