Extracellular Cr(VI) Reduction by the Salt-Tolerant Strain .

Microorganisms

Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microbial reduction in hexavalent chromium (Cr(VI)) is a well characterized bioremediation strategy, yet the mechanistic diversity among bacterial taxa necessitates detailed investigations into strain-specific pathways. Here, we report the isolation and characterization of , a halophilic bacterium derived from saline-alkali soil, which demonstrates efficient Cr(VI) reduction capacity. Physiological assays showed that achieved 89.15% reduction of 20 mg/L Cr(VI) within 72 h, with Cr(III) identified as the primary extracellular end product. Resting cell assays and subcellular fractionation analyses confirmed that Cr(VI) reduction predominantly occurs in the extracellular milieu. X-ray photoelectron spectroscopy (XPS) further revealed soluble Cr(III) complexed with extracellular polymeric substances (EPS). Transcriptomic profiling indicated upregulation of membrane-associated transport systems (facilitating Cr(VI) exclusion) and quorum sensing (QS) pathways (mediating adaptive stress responses). These findings highlight a dual mechanism: (1) extracellular enzymatic reduction mediated by EPS-bound redox proteins, and (2) intracellular detoxification via QS-regulated defense pathways. Collectively, exhibits robust Cr(VI) reduction capacity under saline conditions, positioning it as a promising candidate for bioremediation of Cr(VI)-contaminated saline soils and aquatic ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12388424PMC
http://dx.doi.org/10.3390/microorganisms13081961DOI Listing

Publication Analysis

Top Keywords

crvi reduction
16
reduction capacity
8
reduction
7
crvi
6
extracellular
5
extracellular crvi
4
reduction salt-tolerant
4
salt-tolerant strain
4
strain microbial
4
microbial reduction
4

Similar Publications

Lignin, a negatively charged, three-dimensional natural biopolymer, serves as an ideal support for metal catalysts due to its abundant functional groups and tunable chemical properties, which enable strong metal coordination and effective immobilization. Herein, we demonstrate a lignin-mediated Co/O co-doped AgS, symbolized as L-AgCoOS, bimetal oxysulfide catalyst via a facile hydrolysis method for the efficient reduction of toxic phenolic compounds (4-nitrophenol, 4-NP), organic dyes (methyl orange (MO), methylene blue (MB), rhodamine B (RhB), and heavy metal ions Cr(VI)) under dark conditions. Lignin, used to immobilize catalysts, also contributes to increasing the number of active catalytic sites and enhancing catalytic activity.

View Article and Find Full Text PDF

Establishing a chromium/periodate advanced oxidation process for trace organic contaminants removal: The positive effect of Cr(III) complexation.

J Hazard Mater

September 2025

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China. Electronic address:

Advanced oxidation processes (AOPs) are among the most effective methods for industrial wastewater treatment, but their applications to remove trace organic contaminants (TrOCs) are hampered by a lack of "selectivity". Here, an AOP was established using Cr(III) to activate periodate (PI) (Cr(III)/PI system) realizing rapid TrOCs removal, in which 2 μM tetracycline hydrochloride was completely degraded within 8 min (with 29 μM Cr(III) and 30 μM PI, pH 8). Mechanism analysis revealed the positive effect of Cr(III) complexation on enhancing both the efficiency and selectivity of TrOCs removal.

View Article and Find Full Text PDF

Designing heterostructure-based nanocomposites has gained considerable interest in solving energy scarcity and environmental contamination issues. Herein, a heterojunction assembly of ternary SnS/MoS/g-CN nanocomposites with varying Sn and Mo weight ratios was synthesized through a single-step hydrothermal method. At an optimized ratio of tin to molybdenum (1 : 2), denoted as SM-3, promising electrochemical and photocatalytic performances were observed compared to bare SnS/g-CN and MoS/g-CN.

View Article and Find Full Text PDF

The low-carbon strategy mandates the sustainable remediation of hexavalent chromium (Cr(VI)) contamination, driving the demand for efficient eco-adsorbents. However, current research prioritizes adsorption performance, neglecting environmental trade-offs and quantum chemical mechanisms of Cr(VI) adsorption. Here, we pioneered the first density functional theory (DFT) exploration of Cr(VI) adsorption mechanisms across chitosan (CS), polydopamine (PDA), UiO-66-NH, and polyethylenimine.

View Article and Find Full Text PDF

In this study, Fe-Ni-layered double hydroxide modified crayfish shell biochar substrate (Fe-Ni-LDH@CSBC) was successfully prepared and introduced into constructed wetland (CW) to research the Cr(VI) removal mechanism through substrate adsorption and microbial action. Adsorption experiments demonstrated the equilibrium adsorption capacities of Fe-Ni-LDH@CSBC for Cr(VI) could reach 1058.48 (C=10 mg/L) and 1394.

View Article and Find Full Text PDF