Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polybenzoxazine (PBz)-based conducting materials have gained significant attention due to their unique combination of thermal stability, mechanical strength, and electrical conductivity. These polymers integrate the inherent advantages of polybenzoxazines-such as low water absorption, high glass transition temperature, and excellent chemical resistance-with the electrical properties of conducting polymers like polyaniline, polypyrrole, and polythiophene. The incorporation of conductive elements in polybenzoxazine networks can be achieved through blending, in situ polymerization, or hybridization with nanostructures such as graphene, carbon nanotubes, or metallic nanoparticles. These modifications enhance their charge transport properties, making them suitable for applications in flexible electronics, energy storage devices, sensors, and electromagnetic shielding materials. Furthermore, studies highlight that polybenzoxazine matrices can improve the processability and environmental stability of conventional conducting polymers while maintaining high conductivity. The structure-property relationships of polybenzoxazine-based composites demonstrate that tailoring monomer composition and polymerization conditions can significantly influence their conductivity, thermal stability, and mechanical properties. This review summarizes recent advancements in PBz composites, focusing on their synthesis, structural modifications, conductivity mechanisms, and potential applications in advanced energy storage systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12389650PMC
http://dx.doi.org/10.3390/polym17162194DOI Listing

Publication Analysis

Top Keywords

conducting materials
8
thermal stability
8
stability mechanical
8
conducting polymers
8
energy storage
8
properties
4
properties polybenzoxazine-based
4
conducting
4
polybenzoxazine-based conducting
4
materials energy-related
4

Similar Publications

Carbon aerogels and xerogels, with their 3D porous architectures, ultralow density, high surface area, and excellent conductivity, have emerged as multifunctional materials for energy and environmental applications. This review highlights recent advances in the synthesis of these materials polymerisation, drying, and carbonisation, as well as the role of novel precursors such as graphene, carbon nanotubes, and biomass. Emphasis is also placed on doped and metal-decorated carbon gels as efficient electrocatalysts for oxygen reduction reactions, enabling four- and two-electron pathways for energy conversion and the production of green HO, respectively.

View Article and Find Full Text PDF

Electrically Conductive Hydrogels for Wound Healing.

Adv Wound Care (New Rochelle)

September 2025

Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China.

Wound healing is a complex, tightly regulated process involving a range of enzymes, growth factors, and cytokines that coordinate cellular activities essential for tissue repair and wound closure. However, in cases of extensive or severe injury, the intrinsic repair mechanisms are often insufficient, underscoring the need for advanced therapeutic strategies to accelerate healing and minimize scar formation. Electrically conductive hydrogels (ECHs), combining the advantageous properties of hydrogels with the physiological and electrochemical characteristics of conductive materials, present a safer and more convenient alternative to traditional electrode-based electrical stimulation (ES) for treating chronic and nonhealing wounds.

View Article and Find Full Text PDF

Background: Superficial injection of hyaluronic acid (HA)-based gels is a widely used method to restore skin quality and achieve a more youthful appearance. While the clinical benefits of such procedures are well established, their biological mechanisms of action remain poorly understood.

Objective: This study aimed to evaluate the effectiveness of two cross-linked HA gels (IPN-12.

View Article and Find Full Text PDF

Background: This study aimed to explore the barriers and facilitators of implementing rehabilitation interventions for visual field loss due to stroke.

Methods: The study was a qualitative exploration using one-to-one interviews coded using template analysis and the COM-B a-priori framework. Participants were five occupational therapists from hospital (n=4) and community (n=1) National Health Service (NHS) stroke care settings in England.

View Article and Find Full Text PDF

Origin and mitigation of the imprint effect in hafnia-based ferroelectrics.

Nanoscale

September 2025

School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China.

The potential of hafnia-based ferroelectric materials for Ferroelectric Random Access Memory (FeRAM) applications is limited by the imprint effect, which compromises readout reliability. Here, we systematically investigate the asymmetric imprint behavior in W/HfZrO/W ferroelectric capacitors, demonstrating that the imprint direction correlates directly with the ferroelectric polarization state. Notably, a pre-pulse of specific polarity can temporarily suppress the imprint effect.

View Article and Find Full Text PDF