98%
921
2 minutes
20
: Myasthenia gravis (MG), a chronic autoimmune disorder with variable disease trajectories, presents considerable challenges for clinical stratification and acute care management. This systematic review evaluated machine learning models developed for prognostic assessment in patients with MG. : Following PRISMA guidelines, we systematically searched PubMed, Embase, and Scopus for relevant articles published from January 2010 to May 2025. Studies using machine learning techniques to predict MG-related outcomes based on structured or semi-structured clinical variables were included. We extracted data on model targets, algorithmic strategies, input features, validation design, performance metrics, and interpretability methods. The risk of bias was assessed using the Prediction Model Risk of Bias Assessment Tool. : Eleven studies were included, targeting ICU admission ( = 2), myasthenic crisis ( = 1), treatment response ( = 2), prolonged mechanical ventilation ( = 1), hospitalization duration ( = 1), symptom subtype clustering ( = 1), and artificial intelligence (AI)-assisted examination scoring ( = 3). Commonly used algorithms included extreme gradient boosting, random forests, decision trees, multivariate adaptive regression splines, and logistic regression. Reported AUC values ranged from 0.765 to 0.944. Only two studies employed external validation using independent cohorts; others relied on internal cross-validation or repeated holdout. Of the seven prognostic modeling studies, four were rated as having high risk of bias, primarily due to participant selection, predictor handling, and analytical design issues. The remaining four studies focused on unsupervised symptom clustering or AI-assisted examination scoring without predictive modeling components. : Despite promising performance metrics, constraints in generalizability, validation rigor, and measurement consistency limited their clinical application. Future research should prioritize prospective multicenter studies, dynamic data sharing strategies, standardized outcome definitions, and real-time clinical workflow integration to advance machine learning-based prognostic tools for MG and support improved patient care in acute settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385440 | PMC |
http://dx.doi.org/10.3390/diagnostics15162044 | DOI Listing |
Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.
View Article and Find Full Text PDFAm J Emerg Med
September 2025
University of Toronto, Rotman School of Management, Canada.
Study Objective: Accurately predicting which Emergency Department (ED) patients are at high risk of leaving without being seen (LWBS) could enable targeted interventions aimed at reducing LWBS rates. Machine Learning (ML) models that dynamically update these risk predictions as patients experience more time waiting were developed and validated, in order to improve the prediction accuracy and correctly identify more patients who LWBS.
Methods: The study was deemed quality improvement by the institutional review board, and collected all patient visits to the ED of a large academic medical campus over 24 months.
JMIR Res Protoc
September 2025
University of Nevada, Las Vegas, Las Vegas, NV, United States.
Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.
View Article and Find Full Text PDFNano Lett
September 2025
School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China.
Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.
View Article and Find Full Text PDFAm J Reprod Immunol
September 2025
Department of Laboratory Animal Science, Kunming Medical University, Kunming, China.
Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.
Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.