Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Solid-liquid phase change materials (PCMs), promising for thermal management, face limited application due to leakage and low thermal conductivity. In this work, a shape-stabilized composite PCM was fabricated using a one-pot in situ process by mixing polyethylene glycol (PEG) with the novel metal-organic network called CFK, which was synthesized from carboxylated multi-walled carbon nanotubes (CMWCNTs), FeCl, and Kevlar nanofibers (KNFs). The morphology, composition, and thermophysical characteristics of the composite PCM were assessed. Key properties analyzed to validate its performance included leakage rate, thermal conductivity, latent heat, light absorption, photothermal conversion efficiency, and cycling stability. This composite PCM exhibits reduced leakage while maintaining remarkable thermal energy charge/discharge performance. The study establishes that the composite PCM containing 89.9 wt% PEG has a leakage rate of 0.76% since the PEG molecules are deeply embedded in the pores of CFK. The thermal conductivity of this composite PCM was enhanced by 170.5% relative to pure PEG, and the latent heat was measured as 147.9 J·g for fusion and 143.7 J·g for crystallization. Additionally, this composite PCM reveals excellent light absorption capacity, a photothermal conversion efficiency as high as 83.4%, and outstanding stability in photothermal cycling experiments. In short, this work offers a new strategy for both preparing high-performance composite PCMs and applying them in visible light conversion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387708PMC
http://dx.doi.org/10.3390/ma18163814DOI Listing

Publication Analysis

Top Keywords

composite pcm
24
photothermal conversion
12
thermal conductivity
12
composite
8
phase change
8
change materials
8
leakage rate
8
latent heat
8
light absorption
8
conversion efficiency
8

Similar Publications

Plastics are widely used materials composed of polymers and various additives to achieve specific properties. Their composition is often highly complex, particularly in post-consumer plastic waste. As mechanical recycling faces increasing limitations, chemistry-driven strategies are attracting growing interest to improve plastic recovery.

View Article and Find Full Text PDF

Lithium-ion batteries(LIBs)have been widely used and its safety has attracted much attention. Separators are an essential part of ensuring the safety of LIBs by both allowing ion transport and preventing direct electrical contact between the cathode and anode, Herein, a unique temperature-regulating separator that is thermally stimuli-responsive is designed. A thermosensitive composite separator was ingeniously crafted by filling hollow halloysite that followed by encapsulation with a phase change materials (PCMs) and a bio-adhesive polydopamine with a high-temperature-resistant poly (arylene ether nitriles) polymer.

View Article and Find Full Text PDF

Shape-Stabilized Phase Change Material via In Situ Solid-Liquid Host-Guest Composite Strategy.

Molecules

August 2025

International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai 200444, China.

Solid-liquid phase change materials (PCMs) have attracted significant attention due to their high enthalpy, which enables superior energy storage density. However, it is difficult to maintain their original shapes in a molten state. Therefore, confining PCMs within porous materials is an important method, either through mixing molten polymers and PCMs or confining PCMs in pre-prepared porous materials (e.

View Article and Find Full Text PDF

Solid-liquid phase change materials (PCMs), promising for thermal management, face limited application due to leakage and low thermal conductivity. In this work, a shape-stabilized composite PCM was fabricated using a one-pot in situ process by mixing polyethylene glycol (PEG) with the novel metal-organic network called CFK, which was synthesized from carboxylated multi-walled carbon nanotubes (CMWCNTs), FeCl, and Kevlar nanofibers (KNFs). The morphology, composition, and thermophysical characteristics of the composite PCM were assessed.

View Article and Find Full Text PDF

: It is unclear whether enamel margins should be beveled in direct resin-based restorations. This study evaluated the influence of enamel beveling on the marginal quality of mesio-occluso-distal (mod) cavity boxes. : Seventy-five caries-free human molars were divided into three groups.

View Article and Find Full Text PDF