Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A series of Ce-doped α-MnO catalysts (CeMnO, x = 0.04, 0.07, 0.10) were synthesized by a simple in situ hydrothermal method. It was confirmed by characterization methods such as XRD, Raman, N adsorption-desorption and SEM confirmed that the introduction of Ce significantly regulated the microstructure of α-MnO, specifically manifested as the reduction in grain size, the increase in defect sites, the increase in Mn-O bond length and altered morphological structure. H-TPR, O-TPD and XPS analyses further revealed the strong interaction between Mn and Ce, accompanied by significant electron transfer (Ce + Mn → Ce + Mn), thereby promoting the formation of Mn species. In the test of toluene catalytic oxidation performance, CMnO exhibited the most excellent catalytic activity (T = 280 °C), while also having good thermal stability and water resistance. Furthermore, the degradation pathways of toluene were analyzed by TD-GC-MS technology: Toluene → Benzene → Benzaldehyde → Maleic anhydride → CO and HO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387472PMC
http://dx.doi.org/10.3390/ma18163809DOI Listing

Publication Analysis

Top Keywords

catalytic oxidation
8
5
preparation cemno
4
cemno catalysts
4
catalysts strong
4
strong mn-ce
4
mn-ce synergistic
4
synergistic catalytic
4
toluene
4
oxidation toluene
4

Similar Publications

The anaerobic glycyl radical enzyme choline trimethylamine-lyase (CutC) is produced by multiple bacterial species in the human gut microbiome and catalyzes the conversion of choline to trimethylamine (TMA) and acetaldehyde. CutC has emerged as a promising therapeutic target due to its role in producing TMA, which is subsequently oxidized in the liver to form trimethylamine--oxide (TMAO). Elevated TMAO levels are associated with several human diseases, including atherosclerosis and other cardiovascular disorders─a leading cause of mortality worldwide.

View Article and Find Full Text PDF

Ultrathin Amorphous Iron Oxide Nanosheets for Improving the Electrochemical Performance of Li-S Batteries.

Langmuir

September 2025

Key Laboratory of Functional Molecular Solids (Ministry of Education), College of Chemistry and Materials Science, Anhui Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Normal University, Wuhu 241000, China.

The sluggish kinetics and diffusion of lithium polysulfide (LiPS) intermediates lead to the decline in the capacity and rate of high-energy lithium-sulfur (Li-S) batteries. Integrating adsorbents and electrocatalysts into the Li-S system is an effective strategy for suppressing the polysulfide shuttle and enhancing the redox kinetics of sulfur species. The disordered structure of the electrocatalysts exhibits significantly enhanced catalytic activity.

View Article and Find Full Text PDF

Silicon carbide (SiC) membranes combine exceptional chemical, thermal, and mechanical stability but suffer from surface inertness that precludes functionalization. Conversely, MOFs offer unmatched molecular selectivity but are typically powders, severely limiting their practical use. To address this, we develop a generalizable route to fabricate ultrastable MOF@SiC membranes via sequential oxidation and acidification, creating abundant Si-OH sites on SiC surfaces that covalently bond with Zr-MOF crystals; the bonding mechanism between MOFs and substrates has been extensively studied.

View Article and Find Full Text PDF

A Readily Synthesized All-In-One Nanowire Hydrogel: Toward Inhibiting Tumor Recurrence and Postoperative Infection.

Adv Mater

September 2025

Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital &Guangzhou Institute of Cancer Research, The Affiliate Cancer Hospital &School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, China.

Surgical resection remains the frontline intervention for cancer; however, postoperative tumor recurrence and wound infection remain critical unmet challenge in surgical oncology. Herein, an all-in-one nanowired hydrogel (V-Hydrogel) is developed through a facile one-step assembly employing enzyme-mimetic VO nanowires and bactericidal crosslinker THPS. The V-Hydrogel reserves the glutathione peroxidase-, peroxidase-, catalase-, and oxidase-mimetic enzymatic activities derived from vanadium oxide nanowires, thereby exhibiting efficient tumor-specific catalytic therapy.

View Article and Find Full Text PDF

The accumulation of nitrate (NO) from agricultural runoff poses a growing threat to ecosystems and public health. Converting nitrate into ammonia (NH) through the electrochemical nitrate reduction reaction (NORR) offers a promising strategy to mitigate environmental contamination while creating a sustainable circular route to fertilizer production. However, achieving high NH production and energy efficiency remains challenging.

View Article and Find Full Text PDF