Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Water confined to the quasi-one-dimensional hydrophilic molecular nanoporous crystal of {[Co(Hbim)](TMA)·20HO} () (Hbim = 2,2'-biimidazole, TMA = trimesate) forms dynamic water molecule clusters (WMCs) with a hierarchical three-layered hydrogen-bonding (H-bonding) structure and a time-averaged structure in the melting state due to interactions with the walls of the ∼1.6 nm nanopores. This was first revealed by measuring the solid-state H NMR spectra of a single crystal of {[Co(Dbim)](TMA)·20DO} (), which revealed distinct hierarchical peaks of HO H-bonding interactions. In addition, the frozen WMCs in exhibit a premelting state, retaining some ice structures, just before melting through a first-order phase transition during the heating process. Measurements of the spin-lattice relaxation time () in solid-state H NMR revealed rapid rotation motions for water molecules in these premelting WMCs, resulting in a correlation time τ closer to that of bulk liquid water.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5c04573DOI Listing

Publication Analysis

Top Keywords

solid-state nmr
12
confined quasi-one-dimensional
8
molecular nanoporous
8
water
5
nmr analysis
4
analysis hierarchical
4
hierarchical water
4
water clusters
4
clusters confined
4
quasi-one-dimensional molecular
4

Similar Publications

The electrolyte-electrode interface serves as the foundation for a myriad of chemical and physical processes. In battery chemistry, the formation of a well-known solid-electrolyte interphase (SEI) plays a pivotal role in ensuring the reversible operations of rechargeable lithium-ion batteries (LIBs). However, characterizing the precise chemical composition of the low crystallinity and highly sensitive SEI presents a formidable challenge.

View Article and Find Full Text PDF

The development of analytical techniques applicable to powdered pharmaceutical co-crystals, including those containing excipients, represents a comprehensive strategy for quality control in both drug development and regulatory settings. This study investigates the structural characterization of indomethacin-nicotinamide co-crystals using a combination of microcrystal electron diffraction (microED), solid-state NMR (SSNMR), Raman spectroscopy, and powder X-ray diffraction (PXRD). MicroED analysis revealed the crystal structure of the co-crystal, while SSNMR measurements provided insights into the molecular interactions within the structure.

View Article and Find Full Text PDF

Confinement-Tailored High-Concentration Electrolytes in Metal-Organic Frameworks for Durable Lithium-Metal Batteries.

Small

September 2025

School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China.

High-concentration electrolytes (HCEs) face inherent challenges such as high viscosity and diminished ionic conductivity caused by the formation of three-dimensional (3D) anion networks, which limit their practical applications. In this study, it is demonstrated that encapsulating HCEs within metal-organic frameworks (MOFs) effectively disrupts these 3-D networks, resulting in significantly enhanced ionic conductivity. Raman spectroscopy, nuclear magnetic resonance (NMR), and molecular dynamics (MD) simulations reveal a significant reduction in aggregates (AGGs)-state anion within MOF-confined electrolytes, confirming the reconstruction of the solvation environment.

View Article and Find Full Text PDF

Enhanced Cs triple-quantum excitation in solid-state NMR of Cs-bearing zeolites.

Solid State Nucl Magn Reson

August 2025

School of Chemistry, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel. Electronic address:

Geopolymers are aluminosilicate materials that exhibit effective immobilization properties for low-level radioactive nuclear waste, and more specifically for the immobilization of radioactive cesium. The identification of the cesium-binding sites and their distribution between the different phases making up the geopolymeric matrix can be obtained using solid-state NMR measurements of the quadrupolar spin Cs, which is a surrogate for the radioactive cesium species present in nuclear waste streams. For quadrupolar nuclei, acquiring two-dimensional multiple-quantum experiments allows the acquisition of more dispersed spectra when multiple sites overlap.

View Article and Find Full Text PDF

De novo crystal structure determination of L-alaninamide HCl by quadrupolar NMR crystallography guided crystal structure prediction (QNMRX-CSP).

Solid State Nucl Magn Reson

August 2025

Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA. Electronic address:

Quadrupolar NMR crystallography guided crystal structure prediction (QNMRX-CSP) is a method for determining the crystal structures of organic solids. To date, our two previous QNMRX-CSP studies have relied upon on Cl solid-state NMR (SSNMR) spectroscopy, powder X-ray diffraction (PXRD), Monte-Carlo simulated annealing (MC-SA), and dispersion-corrected density functional theory (DFT-D2∗) calculations for the determination of crystal structures for organic HCl salts with known crystal structures, in order to benchmark the method and subject it to blind tests. Herein, we apply QNMRX-CSP for the de novo crystal structure determination of L-alaninamide HCl (L-Ala-NH), for which no crystal structure has been reported, using Cl SSNMR and PXRD data for structural prediction and refinement, along with C and N SSNMR data for subsequent structural validation.

View Article and Find Full Text PDF