98%
921
2 minutes
20
We adapt previously developed conceptual and numerical models of ciguateric food chains on the Great Barrier Reef, Australia, to model the bioaccumulation of ciguatoxins (CTXs) in parrotfish, the simplest food chain with only two trophic levels. Our model indicates that relatively low (1 cell/cm) densities of / species (hereafter collectively referred to as ) producing known concentrations of CTX are unlikely to be a risk of producing ciguateric fishes on the Great Barrier Reef unless CTX can accumulate and be retained in parrotfish over many months. Cell densities on turf algae equivalent to 10 /cm producing known maximum concentrations of Pacific-CTX-4 (0.6 pg P-CTX-4/cell) are more difficult to assess but could be a risk. This cell density may be a higher risk for parrotfish than we previously suggested for production of ciguateric groupers (third-trophic-level predators) since second-trophic-level fishes can accumulate CTX loads without the subsequent losses that occur between trophic levels. Our analysis suggests that the ratios of parrotfish length-to-area grazed and weight-to-area grazed scale differently (allometrically), where the area grazed is a proxy for the number of consumed and hence proportional to toxin accumulation. Such scaling can help explain fish size-toxicity relationships within and between trophic levels for ciguateric fishes. Our modelling reveals that CTX bioaccumulates but does not necessarily biomagnify in food chains, with the relative enrichment and depletion rates of CTX varying with fish size and/or trophic level through an interplay of local and regional food chain influences. Our numerical model for the bioaccumulation and transfer of CTX across food chains helps conceptualize the development of ciguateric fishes by comparing scenarios that reveal limiting steps in producing ciguateric fish and focuses attention on the relative contributions from each part of the food chain rather than only on single components, such as CTX production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390024 | PMC |
http://dx.doi.org/10.3390/toxins17080380 | DOI Listing |
Anal Chim Acta
November 2025
College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China. Electronic address:
Background: Aflatoxin B1 (AFB1) is a highly carcinogenic mycotoxin frequently found in contaminated food products, posing a significant threat to public health and food safety. Therefore, the development of rapid, sensitive, and reliable detection methods for AFB1 is critical for early warning and prevention. However, traditional detection techniques often require expensive equipment, skilled personnel, and complex procedures, limiting their suitability for on-site applications.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China.
Background: With the development of modern agriculture, neonicotinoid pesticides have been widely used due to their high efficiency and strong systemic properties. However, excessive use leads to the accumulation of residues in the food chain, threatening the ecosystem and human health. Pesticide residues are easily accumulated in oilseed crops and become concentrated during the edible oil refining process.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
State Key Laboratory of Loess Science, Shaanxi Key Laboratory of AMS Technology and Application, Xi'an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China. Electronic address:
Pu and Sr are highly important radionuclides in the environment, which can accumulate in the human body through the food chain and cause radiation exposure. With the continuous discharge of treated nuclear contamination water from the Fukushima Daiichi nuclear power plant, it is crucial to investigate and monitor the levels of Pu and Sr in seafood. However, it is still a challenge to determine Pu and Sr in seafood at environmental levels, owing to their extremely low concentrations, labor-intensive and time-consuming pre-treatment for large-sized samples.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
State Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Detection of Veterinary Drug Residues and Illegal Additives of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. Electronic address: haiyang
Background: Aflatoxin B1 (AFB1) stands among the most toxic naturally occurring substances, with its acute toxicity characterized by the induction of acute hepatic necrosis, hemorrhage, and even fatal outcomes, thereby posing a profound threat to human health. Contamination of AFB1 in food commodities can arise at multiple stages throughout the production cycle, including cultivation, storage, and processing. This contamination cascade permeates the entire food supply chain, encompassing primary agricultural products as well as a diverse range of processed food items.
View Article and Find Full Text PDFJ Microbiol Methods
September 2025
French Armed Forces Medical Directorate, Veterinary Quality Unit, Paris, France.
Foodborne diseases are caused by various pathogens and generally present with similar symptoms, mainly digestive disorders. Adopting a syndromic approach is therefore important when investigating foodborne disease outbreaks. This involves using multiplex PCR-based methods to test stool and food samples.
View Article and Find Full Text PDF