98%
921
2 minutes
20
Multiple factors, including genetics, nutrition, and health, influence the vertical transmission of microbiota from mothers to their offspring. Recent studies have shown that avian microbiota can be passed to the next generation via the eggshell and egg albumen. However, it remains unclear whether these microbial communities are regulated by nutrition and how they are associated with the host genotype. Chickens, with their controlled rearing conditions and stable genotypes, provide a promising model for investigating microbiome transmission in birds. This study aims to determine whether host genotype-associated bacteria are vertically transmitted between generations, and how maternal nutritional intervention with soyasaponin modulates this microbial transfer, thereby shaping chick intestinal development and informing effective nutritional strategies. We established a microbial vertical transmission model across various anatomical sites in breeder hens, chicken embryos, and chicks. Avian gut microbiota and reproductive tract microbiota can both be found in chicks at various developmental stages. Supplementing breeder hen diets with soyasaponin interacts with vertically transmitted to produce γ-aminobutyric acid. This compound modulates offspring intestinal development through distinct mechanisms in chick epithelial cells, including the inhibition of LC3 and caspase3-associated autophagy and apoptosis pathways, as well as the promotion of proliferation and differentiation pathways mediated by LGR5 and Olfm4. Our study highlights that avian gut and reproductive tract microbiota are transmitted to chicks through the cloaca, with the yolk sac also being instrumental in this vertical transfer. The incorporation of soyasaponin in avian diets affects microbial transfer, providing a theoretical basis for studying maternal effects in poultry and formulating corresponding dietary strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12371269 | PMC |
http://dx.doi.org/10.1002/imt2.70044 | DOI Listing |
Br J Nurs
September 2025
Professor, Department of Digestive Diseases, Transplantation and General Surgery, Copenhagen University Hospital Rigshospitalet/Department of Clinical Medicine, University of Copenhagen, Denmark.
Introduction: Approximately 1 million people live with ileostomies and rely on stoma bags in their daily lives. They do not have access to alternative products. To address alternatives, InterPoc™, an absorbent intestinal tampon, has been developed.
View Article and Find Full Text PDFAPMIS
September 2025
Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu, India.
Kefir grains offer numerous health benefits, including boosting the immune system, alleviating digestive issues, and enhancing antimicrobial activity. They are rich in beneficial probiotic bacteria that promote gut health and support a balanced intestinal microbiota. "Beta-lactoglobulin (β-lg), a well-known milk protein," is used to create nanofibril structures that can serve as scaffolds.
View Article and Find Full Text PDFInfect Disord Drug Targets
September 2025
Department of Chemistry, NFC Institute of Technology, Multan, Pakistan.
Introduction: Targeted infection imaging is crucial for accurate diagnosis in postpartum women. This project uses 99mTc-labeled cefixime to develop a radiopharmaceutical for detecting, distinguishing, and treating infections and abscesses in women.
Method: Technetium (TcO4-) chelated with cefixime, reduced by stannous chloride, confirmed via thin-layer chromatography.
Phytomedicine
August 2025
College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; Yunnan Provincial Engineering Research Center for Edible
Background: Walnut septum, a Juglans regia L. by-product with culinary-medicinal value, is a rich source of bioactive polyphenols. The chemical complexity and anti-colitis activities of these polyphenols remain uncharacterized.
View Article and Find Full Text PDFCurr Microbiol
September 2025
Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
This review article describes recent research advances in the relationship between spinal cord injury (SCI) and the gut microbiota and each other's inflammatory response. SCI is a serious neurological disease that directly damages physiological function. Recent studies have shown that SCI significantly affected the composition and function of the gut microbiota, and even caused intestinal inflammation.
View Article and Find Full Text PDF