Identification of key species and molecular mechanisms driving conjugative transfer of antibiotic resistance genes in swine manure-derived bacterial communities.

J Hazard Mater

Guangdong Laboratory for Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South Ch

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The spread of antimicrobial resistance in livestock environments poses a major public health risk. Conjugative transfer plays a key role in antimicrobial resistance transmission, but the diversity of bacterial hosts involved and the molecular mechanisms driving conjugative transfer within complex microbial communities remain poorly understood. To address this, we investigated plasmid-mediated conjugation in both a swine manure-derived bacterial community and isolated strains from manure. Our study identified 53 OTUs as plasmid recipients, with 66 % belonging to Proteobacteria. Exposure to subinhibitory doxycycline levels decreased the diversity of transconjugants, but conjugation-related gene expression was significantly upregulated, which also became apparent in a marked increase in conjugation frequency. Increased conjugation frequency correlated with increased ATP, ROS and eLDH levels both in the complex bacterial community and in pairwise strains, pointing to the physiological shifts occurring in species that engage in conjugation. Among the identified recipients, Bacillus velezensis exhibited the highest conjugation frequency, likely due to the upregulation of its two-component system, quorum sensing pathways, and strong biofilm-forming ability. Our findings provide new insights into conjugative transfer in livestock manure, identifying potential key spreaders and highlighting opportunities for targeted intervention strategies to mitigate antimicrobial resistance transmission, thereby enhancing its sustainability as a fertilizer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.139638DOI Listing

Publication Analysis

Top Keywords

conjugative transfer
16
antimicrobial resistance
12
conjugation frequency
12
molecular mechanisms
8
mechanisms driving
8
driving conjugative
8
swine manure-derived
8
manure-derived bacterial
8
resistance transmission
8
bacterial community
8

Similar Publications

Background: Sulfur dioxide (SO) is recognized as a major atmospheric pollutant and its excessive emissions can pose a great threat to the environment, flora and fauna, and human health. Long-term exposure to excessive SO can cause chronic poisoning, leading to neurological disorders and cardiovascular diseases. However, there are two sides to everything.

View Article and Find Full Text PDF

Increase in breast cancer has led to the search for systems that can enable, targeted, sustained and prolonged release of drugs while simultaneously reducing the side effects posed by them. In light of this, folic acid-conjugated 5-Fluorouracil and doxorubicin loaded chitosan/Fe₃O₄ (FA-dual@CS/Fe₃O₄) nanocomposite has been synthesized using the chemical method for targeted breast cancer therapy in addition to CS/FeO and dual drug encapsulated CS/FeO. FTIR and XPS studies confirm the successful drug encapsulation and FA conjugation.

View Article and Find Full Text PDF

Co-existence of mcr-1 and bla from porcine-derived Escherichia coli isolated in China and selection of mcr-1 under cephalosporins pressure.

J Glob Antimicrob Resist

September 2025

Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, Jilin 130122, China. Electronic address:

Objectives: The usage of cephalosporins (CEFs) and co-existence of extended-spectrum β-lactamase (ESBL) gene bla in the same host may promote the prevalence of colistin (CST) resistance gene mcr-1. This study aims to investigate the underlying mechanisms how the mcr-1 and bla demonstrate significant co-occurrence in Escherichia coli (E. coli).

View Article and Find Full Text PDF

Higher chlorine dosage does not consistently enhance antibiotic resistance mitigation in the Cl-UV process.

Water Res

September 2025

Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China. Electronic address:

Health problems arising from antibiotic resistance are a global concern. The Cl-UV disinfection process has shown potential for controlling antibiotic resistance in water; however, the influence of disinfectant dosage on its effectiveness remains insufficiently understood. Can antibiotic resistance be controlled by simply increasing the disinfectant dosage? This study demonstrated that higher disinfectant levels improved antibiotic resistance gene (ARG) removal, with certain ARGs reaching 1.

View Article and Find Full Text PDF

Palladium-Catalyzed Asymmetric Aminomethylative Pyridonation of Conjugated Dienes.

Org Lett

September 2025

State Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China.

A novel palladium-catalyzed asymmetric aminomethylative pyridonation of conjugated dienes with -acetals and 2-hydroxypyridines was established, which provided a direct and reliable method for the synthesis of a wide range of γ-aminated N-substituted 2-pyridones with good to excellent enantioselectivities. The simple BF was identified as an effective cocatalyst to improve the reaction efficiency, and DFT calculations revealed that proton transfer between the aminomethylated allylic palladium species and 2-hydroxypyridine promoted by BF is crucial for obtaining good reactivity.

View Article and Find Full Text PDF