98%
921
2 minutes
20
The extensive dendrite formation and unstable interfacial chemical environment pose significant obstacles to operating lithium metal batteries under extreme conditions. Here, we develop an allyl ether electrolyte operated across a wide-temperature range. Leveraging the neighboring group participation effect of alkenyl groups, the designed electrolyte possesses a quasi-weak solvation structure with low desolvation energy. Moreover, this effect facilitates the anion decomposition to form a dual-layer solid electrolyte interface, suppressing dendrite formation and surface parasitic reactions. Therefore, the single-salt, single-solvent electrolyte enables reversible lithium plating/stripping with high Coulombic efficiencies from -40 °C to 60 °C. The assembled 50 μm lithium | |3.5 mAh cm sulfurized polyacrylonitrile full cells achieve capacity retention of 93.1% after 150 stable cycles (0.2 C) at 25 °C, where the positive electrode could retain 78% of its room temperature capacity at -40 °C. Moreover, the pouch cells demonstrate promising cycling stabilities, with a capacity retention of 94.8% (0.5 C), 92.4% (0.2 C), and 72.7% (0.1 C) after 100 cycles at 60 °C, 25 °C, and -40 °C, respectively. This terminal group modification strategy offers perspectives for wide-temperature electrolyte design, representing a crucial advancement in enhancing the performance of lithium metal batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378987 | PMC |
http://dx.doi.org/10.1038/s41467-025-63262-z | DOI Listing |
J Colloid Interface Sci
August 2025
Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:
Lithium‑sulfur batteries (LSBs) are promising alternatives to lithium-ion batteries due to their high energy density and low cost. However, issues like the lithium polysulfide (LiPSs) shuttle effect, lithium dendrite growth, and flammable electrolytes hinder commercialization. In this study, we have developed a metal-based catalyst, bismuth oxychloride (BiOCl) nanoflowers coated with conductive polypyrrole (Bi@Ppy), via hydrothermal synthesis.
View Article and Find Full Text PDFChem Rec
September 2025
Analytical and Applied Chemistry Division, CSIR-National Metallurgical Laboratory, Jamshedpur, 831007, India.
Transition metal oxides (TMOs) are a promising material for use as anodes in lithium-ion batteries (LIBs). TMO anode can be classified on the basis of their lithiation/delithiation mechanism, such as intercalation mechanism-based TMO anode, conversion mechanism-based TMOs, and alloying/dealloying mechanism-based TMO anode. Each class of TMOs has its own advantages and limitations.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada.
Anode-free sulfide-based all-solid-state lithium metal batteries (ASSLMBs), which eliminate the need for a lithium metal anode during fabrication, offer superior energy density, enhanced safety, and simplified manufacturing. Their performance is largely influenced by the interfacial properties of the current collectors. Although previous studies have investigated the degradation of sulfide electrolytes on commonly used copper (Cu) and stainless steel (SS) current collectors, the impact of spontaneously formed surface oxides, such as copper oxide (CuO/CuO) and chromium oxide (CrO), on interfacial stability remains underexplored.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Organic Chemistry, University of Geneva, Geneva, Switzerland.
Supramolecular chemistry promises that insights into contact between molecules will open up new directions to approach significant questions in science and society. In this spirit, Kraus et al. report the translation of fundamentally new dynamic covalent thioorthoester chemistry into metal-scavenging porous network materials and sulfur-rich, leakage-free cathode composites in lithium batteries (https://doi.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Hebei Engineering Research Center of Advanced Energy Storage Technology and Equipment, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Reliability and Intelligence of
High-voltage lithium metal batteries (LMBs) have emerged as ideal candidates for achieving high-energy-density energy storage devices. Notably, high-reactive lithium metal and high-voltage transition metal oxide cathodes require electrolytes with superior electrochemical stability and interfacial compatibility. Herein, a solvent chemistry electrolyte design strategy is proposed that a weakly-solvated fluorinated bis(2,2,2-trifluoroethyl) carbonate (TFEC) was introduced into carbonate electrolyte for enhanced high voltage performance.
View Article and Find Full Text PDF