98%
921
2 minutes
20
A novel concept for assembling ordered porous silica microsphere monolayers for screening in miniaturized planar chromatography is disclosed. It contributes to sustainability in chromatography by facilitating parallel sample separation, reducing volume consumption, enabling cost-effective layer fabrication, and promoting the feasibility of automation. The first step toward realizing the proposed concept has been taken. Monodisperse porous silica microspheres with nominal diameters of 5 and 9 µm are assembled in a close-packed single-layer on a hydrophobic carrier surface to restrict cross-flow between adjacent tracks of separated samples. In particular, the assembly of close-packed chromatographic silica or C18-coated monolayers is demonstrated for the first time using a solvent-free rubbing technique on polydimethylsiloxane-coated glass slides. However, the coating is prone to swelling and influences the separation. It caused strong retention of lipophilic compounds and front-elution of water-soluble compounds, resulting in poor separation. Next steps will focus on assembling or transferring the close-packed monolayers onto a more inert glass coating or carrier and on functionalizing the silica microspheres to utilize the miniaturized chromatographic separation fully. Hyphenation with planar bioassays and high-resolution mass spectrometry for sensitive targeted detection of active compounds will follow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2025.466306 | DOI Listing |
Int J Biol Macromol
September 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China. Electronic address:
The development of effective hemostatic and antibacterial dressings remains a critical challenge in wound management. We report the design and fabrication of novel porous composite hydrogels composed of carboxymethyl cellulose (CMC), silica (SiO), and zinc oxide nanoparticles (ZnO NPs) . The incorporation of SiO and ZnO NPs into the CMC hydrogel matrix resulted in a unique multi-scale porous structure, characterized by interconnected holes of various sizes, which significantly enhanced the hydrogel's liquid absorption capacity and mechanical strength.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, Guangdong, China.
Introduction: During the healing process, the functional gradient attachment of the rotator cuff (RC) tendon-bone interface fails to regenerate, which severely impedes load transfer and stress dissipation, thereby increasing the risk of retears. As a result, the treatment of rotator cuff tears remains a significant clinical challenge.
Methods: In this study, a dual-crosslinked hyaluronic acid/polyethylene glycol (HA/PEG) hydrogel scaffold was synthesized using hyaluronic acid and polyethylene glycol as base materials.
ACS Omega
September 2025
Department of Chemistry, Faculty of Science, Dokuz Eylul University, Izmir 35160, Turkey.
A novel silica-based sorbent, silica-carbazole-formazan (Si-Carb-Formazan), was synthesized through in situ functionalization with a newly prepared carbazole formazan derivative to remove Cu-(II) ions from aqueous solutions efficiently. The sorbent was characterized using techniques such as FTIR, SEM, TGA, and XPS, which revealed a porous structure with a high surface area and excellent thermal stability. Batch adsorption experiments analyzed the influence of various factors on the sorbent's performance, demonstrating its high efficiency.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China. Electronic address:
Background: The separation of structural isomers is always a challenging task for liquid chromatography because of their similar physicochemical property. Research has found that materials with regular microporous structures exhibit excellent isomer separation performance. However, as the most easily available chromatographic material, silica stationary phases with regular and small mesopore structure have not yet been prepared, and it remains to be confirmed whether narrow pores in silica materials have the enhancing effect on shape selectivity in the separation of structural isomers.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Guizhou Institute of Technology, Guiyang, 550025, China.
Karst regions face severe water scarcity due to rapid hydrological leakage and complex geological structures. To address this challenge, this study developed a bioinspired porous condensation material by integrating sand-based substrates with optimized hydrophilic-hydrophobic properties and aluminum fiber modifications. Through orthogonal experiments, the optimal formulation (0.
View Article and Find Full Text PDF