LXR-β regulates microglial efferocytosis and neuroinflammation in CPSP via STAT6 activation.

Brain Behav Immun

Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China. Electronic add

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Central post-stroke pain (CPSP) is a chronic neuropathic pain syndrome that develops following cerebrovascular injury and currently lacks effective treatment options. Previous research from our group has found a significant number of apoptotic cells in the thalamus of CPSP rats, and in the nervous system, the failure to promptly clear apoptotic cell debris can activate microglia, triggering a persistent neuroinflammatory response that contributes to the onset and progression of CPSP. Microglia clear apoptotic cells in the central nervous system through efferocytosis, a process that reduces neuroinflammation and promotes the reprogramming of microglia toward the M2 phenotype, which is crucial for immune defense and repair mechanisms in the central nervous system. Recent studies have shown that Liver X Receptor β (LXR-β) can regulate microglial efferocytic function, reduce neuroinflammation after intracerebral hemorrhage, and promote recovery of neurological function. In this study, we explore the potential mechanism by which LXR-β regulates microglial efferocytosis to alleviate CPSP.

Methods: Based on the single-cell sequencing dataset of human brain hemorrhage patients and thalamic tissue samples from rats with central post-stroke pain, a systematic analysis of the dynamic changes in efferocytosis and the associated neuroinflammation was conducted. To verify whether LXR-β regulates CPSP through efferocytosis and its potential mechanism, rats were treated with GW3965 (LXR-β agonist), GSK2033 (LXR-β inhibitor), and AS1517499 (STAT6 inhibitor), either separately or in combination. Assessments included nociceptive behavior, efferocytosis, and the expression of efferocytosis-related molecules, inflammatory factors and microglial polarization markers. In vitro experiments using BV2 cells were also performed to further elucidate the underlying mechanisms.

Results: Human brain hemorrhage sequencing and the CPSP rat thalamic hemorrhage model results indicated that insufficient clearance of apoptotic cells and abnormal activation of microglia were key factors contributing to abnormal neuroinflammation following a stroke. The down-regulation of LXR-β is associated with mechanical allodynia after CPSP. Activation of LXR-β enhanced efferocytosis, and upregulated efferocytosis-related molecules (MerTK, Axl, and CD36). These effects contributed to reduced neuroinflammation, promoted microglial polarization toward the M2 phenotype, and alleviated CPSP. Biological analyses and experimental results indicated that LXR-β regulated these effects through the activation of p-STAT6. In vitro studies also confirmed that the LXR-β/p-STAT6 signaling pathway is closely associated with efferocytosis and inflammation regulation in BV2 cells.

Conclusions: LXR-β promotes microglial efferocytosis and the expression of efferocytosis-related molecules (Mertk, Axl, and CD36) by activating p-STAT6, thereby reducing neuroinflammation, reprogramming microglia toward the M2 phenotype, and alleviating CPSP. Targeting LXR-β or its downstream signaling pathways may offer a promising therapeutic strategy for central neuropathic pain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2025.106089DOI Listing

Publication Analysis

Top Keywords

lxr-β regulates
12
microglial efferocytosis
12
apoptotic cells
12
nervous system
12
efferocytosis-related molecules
12
lxr-β
11
efferocytosis
9
cpsp
9
regulates microglial
8
central post-stroke
8

Similar Publications

Environmental Stresses Constrain Soil Microbial Community Functions by Regulating Deterministic Assembly and Niche Width.

Mol Ecol

September 2025

State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.

Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).

View Article and Find Full Text PDF

The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.

View Article and Find Full Text PDF

P3IPs activate autophagy by disrupting the GAPC2-ATG3 interaction and target TuMV 6K2 for degradation.

New Phytol

September 2025

State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.

Our previous work identified p3-interacting protein (P3IP) as a novel plant factor that interacts with rice stripe virus p3 protein and activates autophagy to mediate its degradation, thereby restricting infection. However, the mechanism of P3IP-mediated autophagy and the evolutionary conservation of its antiviral function remain unknown. This study demonstrates that two Arabidopsis thaliana homologs, AtP3IP and AtP3IPH (Arabidopsis P3IP homologs, AtP3IPs), similarly activate autophagy and confer resistance to turnip mosaic virus (TuMV).

View Article and Find Full Text PDF

Background: Intensive language-action therapy treats language deficits and depressive symptoms in chronic poststroke aphasia, yet the underlying neural mechanisms remain underexplored. Long-range temporal correlations (LRTCs) in blood oxygenation level-dependent signals indicate persistence in brain activity patterns and may relate to learning and levels of depression. This observational study investigates blood oxygenation level-dependent LRTC changes alongside therapy-induced language and mood improvements in perisylvian and domain-general brain areas.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a prevalent chronic disease, characterized by progressive joint degeneration and primarily affects older adults. OA leads to reduced functional abilities, a lower quality of life, and an increased mortality rate. Currently, effective treatment options for OA are lacking.

View Article and Find Full Text PDF