Regulating the Nanosheets Structures in Pitch-Derived Amorphous Carbons for Efficient Sodium-Ion Storage.

Angew Chem Int Ed Engl

CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P.R. China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Amorphous carbon (AC), prized for their cost-effectiveness and excellent performance, are promising as an anode material for sodium-ion batteries (SIBs). However, its amorphous structure challenges balancing high rate capability with high capacity. This study regulates the nanosheets structure of pitch-derived-AC (PDAC) through pre-polymerization-induced polycyclic aromatic hydrocarbons growth, enabling simultaneous enhancement of rate capability and maintenance of high capacity. The regulation of the nanosheets length to 12.27 nm can increase the closed pore volume to 0.062 cm g, thereby facilitating the formation of quasi-metallic sodium clusters, which elevates the specific capacity of PDAC to 377.4 mAh g in an ester-based-electrolyte, with the plateau region contributing up to 68.0%. Furthermore, the extended nanosheets maintain a spacing of 0.396 nm, overcoming the kinetics limitations inherent in accessing plateau capacity at high current. Consequently, a specific capacity of 357.8 mAh g (incl. 248.1 mAh g plateau capacity) is achieved at 200 mA g, with retention of 253.6 mAh g at 500 mA g. Additionally, the PDAC demonstrates exceptional cycling stability, retaining 90.4% of its initial capacity after 1000 cycles. The critical roles of extending nanosheets, maintaining interlayer spacing, and increasing closed pore volume in enabling efficient Na⁺ storage and advancing fast-charging SIBs are systematically elucidated.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202507996DOI Listing

Publication Analysis

Top Keywords

rate capability
8
high capacity
8
closed pore
8
pore volume
8
specific capacity
8
plateau capacity
8
capacity
7
regulating nanosheets
4
nanosheets structures
4
structures pitch-derived
4

Similar Publications

We report on the development of a robust microfluidic nozzle capable of generating replenishing liquid sheet targets with sub-micron thickness at up to kHz repetition rates, a λ/20 surface flatness over areas of at least 100 μm2, and in-vacuum dimensions of 6 × 1.5 mm2. The platform was evaluated for stability under hundreds of 4.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries (AZIBs) represent an environmentally benign energy storage alternative. However, the VO cathode suffers from limited cycling stability and rate capability due to structural instability, vanadium dissolution, and high desolvation energy caused by the large size of [Zn(HO)] deintercalation. Address these issues, we introduce a VO/VOPO (VOP) heterostructure that that reinforces the crystal structure to suppress vanadium dissolution and establishes a hydrophilic interface reducing the desolvation energy of Zn.

View Article and Find Full Text PDF

Antifouling Molecularly Imprinted Photoelectrochemical Sensors for Ultrasensitive and Selective Detection of the Sulfamethoxazole Antibiotic.

Anal Chem

September 2025

Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.

Sulfamethoxazole (SMX) is a widely used antibiotic with toxic and persistent residues, which poses potential health risks in aquatic environments. However, reliable and accurate detection is impeded by the nonspecific adsorption of interfering biomolecules in complex matrices. This study develops a molecularly imprinted photoelectrochemical (PEC) sensor based on BiOS/BiWO with excellent selectivity and antifouling properties.

View Article and Find Full Text PDF

Metabolic stress and negative energy balance (NEB) are typical undesirable accompanying phenomenon of the post-partum period in dairy cattle. They negatively affect not only milk production but also the reproductive abilities of the cow, and it is therefore desirable to recognize NEB early to prevent its development. Metabolic stress markers are traditionally total cholesterol (tChol), non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB) and triacylglycerols (TAGs).

View Article and Find Full Text PDF

Decoupling Transport of Salt Ions and Water in Hierarchically Structured Hydrogel for High Salinity Desalination.

Adv Mater

September 2025

Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.

Global water scarcity demands next-generation desalination technologies that transcend the limitations of energy-intensive processes and salt accumulation. Herein, a groundbreaking interfacial solar steam generation system capable of simultaneous hypersaline desalination and ambient energy harvesting is introduced. Through hierarchical hydrogel architecture incorporating a central vertical channel and radial channels with gradient apertures, the design effectively decouples salt transport and water evaporation: solar-driven fluid convection directs water outward for evaporation, while inward salt migration prevents surface crystallization and redistributes excess heat.

View Article and Find Full Text PDF